{"title":"Polymer gels for aqueous metal batteries","authors":"Tianfu Zhang, Keliang Wang, Hengwei Wang, Manhui Wei, Zhuo Chen, Daiyuan Zhong, Yunxiang Chen, Pucheng Pei","doi":"10.1016/j.pmatsci.2025.101426","DOIUrl":null,"url":null,"abstract":"With the advantages of high energy density and low cost, aqueous metal batteries have received widespread attention as energy conversion and storage devices. Polymer gels are suitable electrolytes because of their high chemical stability, safety, and inhibition of metal dendrites. However, the commercial application of polymer gels is challenged by factors that include electrolyte–electrode interfaces, external forces, and extreme environments. In addition, it is challenging to design polymer gels that satisfy multiple needs due to trade-offs between different properties. In this review, we present recent advances in polymer gels for aqueous metal batteries. First, the advantages of polymer gels as electrolytes are summarized. Then, the relationship among the structural, properties, and applications of polymer gels is discussed in detail to motivate the exploitation of high-performance polymer gels. The special requirements of different metal batteries for polymer gels are also summarized, including flame retardancy, anode protection, and decomposition of parasitic products. Subsequently, synthesis strategies based on machine learning and characterization techniques for polymer gels are highlighted. Finally, the challenges and future prospects of polymer gels for applications in aqueous electrical energy storage devices are discussed. This review aims to provide guidance for the design of advanced and compatible polymer gels.","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"371 1","pages":""},"PeriodicalIF":33.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.pmatsci.2025.101426","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the advantages of high energy density and low cost, aqueous metal batteries have received widespread attention as energy conversion and storage devices. Polymer gels are suitable electrolytes because of their high chemical stability, safety, and inhibition of metal dendrites. However, the commercial application of polymer gels is challenged by factors that include electrolyte–electrode interfaces, external forces, and extreme environments. In addition, it is challenging to design polymer gels that satisfy multiple needs due to trade-offs between different properties. In this review, we present recent advances in polymer gels for aqueous metal batteries. First, the advantages of polymer gels as electrolytes are summarized. Then, the relationship among the structural, properties, and applications of polymer gels is discussed in detail to motivate the exploitation of high-performance polymer gels. The special requirements of different metal batteries for polymer gels are also summarized, including flame retardancy, anode protection, and decomposition of parasitic products. Subsequently, synthesis strategies based on machine learning and characterization techniques for polymer gels are highlighted. Finally, the challenges and future prospects of polymer gels for applications in aqueous electrical energy storage devices are discussed. This review aims to provide guidance for the design of advanced and compatible polymer gels.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.