Urban heat mitigation through misting, and its role in broader blue infrastructure portfolios

IF 7.9 1区 环境科学与生态学 Q1 ECOLOGY Landscape and Urban Planning Pub Date : 2025-01-02 DOI:10.1016/j.landurbplan.2024.105290
Xinjie Huang, Elie Bou-Zeid, Jennifer K. Vanos, Ariane Middel, Prathap Ramamurthy
{"title":"Urban heat mitigation through misting, and its role in broader blue infrastructure portfolios","authors":"Xinjie Huang, Elie Bou-Zeid, Jennifer K. Vanos, Ariane Middel, Prathap Ramamurthy","doi":"10.1016/j.landurbplan.2024.105290","DOIUrl":null,"url":null,"abstract":"Evaporative misters have long been used in urban spaces for heat mitigation, yet their thermal stress impacts and optimal operating conditions have not been fully explored. To fill this gap, we develop a misting model and embed it into an urban canopy model for the first time. Our tests confirm that misters can considerably reduce maximum urban canyon air temperature (up to 17.5 °C) and human skin temperature (up to 0.48 °C) in a hot and dry city (Phoenix, AZ). They continue to effectively reduce thermal stress, albeit with half of the cooling benefits, in a hot and humid city (Houston, TX). These thermal stress impacts are contingent upon wind speeds: the optimal wind speeds generally fall within an intermediate range—from light air (with low mist flow rates) to a moderate breeze (with higher mist flow rates). We then incorporate misting into a broader comparison of blue cooling strategies, including irrigation (on vegetation) and sprinkling (on pavements). With abundant water resources, sprinkling on asphalt and misting are the most effective cooling solutions, particularly suitable for middays and late afternoons, respectively. To balance cooling benefits with limited water resources, we propose a thermostatic control scheme that can save at least 10.5 m<ce:sup loc=\"post\">3</ce:sup>/day of water compared to continuous misting for a 100-m stretch of street, equivalent to the water demand of about 20 Phoenix residents. Notably, misting and sprinkling generate rapid cooling in under 10 min with sufficient flow rates, demonstrating their potential as fast activation measures during extreme heat emergencies.","PeriodicalId":54744,"journal":{"name":"Landscape and Urban Planning","volume":"34 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landscape and Urban Planning","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.landurbplan.2024.105290","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Evaporative misters have long been used in urban spaces for heat mitigation, yet their thermal stress impacts and optimal operating conditions have not been fully explored. To fill this gap, we develop a misting model and embed it into an urban canopy model for the first time. Our tests confirm that misters can considerably reduce maximum urban canyon air temperature (up to 17.5 °C) and human skin temperature (up to 0.48 °C) in a hot and dry city (Phoenix, AZ). They continue to effectively reduce thermal stress, albeit with half of the cooling benefits, in a hot and humid city (Houston, TX). These thermal stress impacts are contingent upon wind speeds: the optimal wind speeds generally fall within an intermediate range—from light air (with low mist flow rates) to a moderate breeze (with higher mist flow rates). We then incorporate misting into a broader comparison of blue cooling strategies, including irrigation (on vegetation) and sprinkling (on pavements). With abundant water resources, sprinkling on asphalt and misting are the most effective cooling solutions, particularly suitable for middays and late afternoons, respectively. To balance cooling benefits with limited water resources, we propose a thermostatic control scheme that can save at least 10.5 m3/day of water compared to continuous misting for a 100-m stretch of street, equivalent to the water demand of about 20 Phoenix residents. Notably, misting and sprinkling generate rapid cooling in under 10 min with sufficient flow rates, demonstrating their potential as fast activation measures during extreme heat emergencies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Landscape and Urban Planning
Landscape and Urban Planning 环境科学-生态学
CiteScore
15.20
自引率
6.60%
发文量
232
审稿时长
6 months
期刊介绍: Landscape and Urban Planning is an international journal that aims to enhance our understanding of landscapes and promote sustainable solutions for landscape change. The journal focuses on landscapes as complex social-ecological systems that encompass various spatial and temporal dimensions. These landscapes possess aesthetic, natural, and cultural qualities that are valued by individuals in different ways, leading to actions that alter the landscape. With increasing urbanization and the need for ecological and cultural sensitivity at various scales, a multidisciplinary approach is necessary to comprehend and align social and ecological values for landscape sustainability. The journal believes that combining landscape science with planning and design can yield positive outcomes for both people and nature.
期刊最新文献
Preferring Local over Non-Local Parks? Green Space Visit Patterns by Urban Residents in Desert Cities, Arizona Urban heat mitigation through misting, and its role in broader blue infrastructure portfolios How sensory stimuli and barrier-free environments through restorative environmental perception influence visually impaired Individuals’ satisfaction with urban parks Availability is not enough, but visitation and usage matter: Assessing associations between natural environments and depressive and anxiety symptoms Measuring the effectiveness of street renewal design: Insights from visual preference surveys, deep-learning technology, and eye-tracking simulation software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1