A transformer-based deep learning survival prediction model and an explainable XGBoost anti-PD-1/PD-L1 outcome prediction model based on the cGAS-STING-centered pathways in hepatocellular carcinoma.
{"title":"A transformer-based deep learning survival prediction model and an explainable XGBoost anti-PD-1/PD-L1 outcome prediction model based on the cGAS-STING-centered pathways in hepatocellular carcinoma.","authors":"Ren Wang, Qiumei Liu, Wenhua You, Huiyu Wang, Yun Chen","doi":"10.1093/bib/bbae686","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies suggest cGAS-STING pathway may play a crucial role in the genesis and development of hepatocellular carcinoma (HCC), closely associated with classical pathways and tumor immunity. We aimed to develop models predicting survival and anti-PD-1/PD-L1 outcomes centered on the cGAS-STING pathway in HCC. We identified classical pathways highly correlated with cGAS-STING pathway and constructed transformer survival model preserving raw structure of pathways. We also developed explainable XGBoost model for predicting anti-PD-1/PD-L1 outcomes using SHAP algorithm. We trained and validated transformer survival model on pan-cancer cohort and tested it on three independent HCC cohorts. Using 0.5 as threshold across cohorts, we divided each HCC cohort into two groups and calculated P values with log-rank test. TCGA-LIHC: C-index = 0.750, P = 1.52e-11; ICGC-LIRI-JP: C-index = 0.741, P = .00138; GSE144269: C-index = 0.647, P = .0233. We trained and validated [area under the receiver operating characteristic curve (AUC) = 0.777] XGBoost model on immunotherapy datasets and tested it on GSE78220 (AUC = 0.789); we also tested XGBoost model on HCC anti-PD-L1 cohort (AUC = 0.719). Our deep learning model and XGBoost model demonstrate potential in predicting survival risks and anti-PD-1/PD-L1 outcomes in HCC. We deployed these two prediction models to the GitHub repository and provided detailed instructions for their usage: deep learning survival model, https://github.com/mlwalker123/CSP_survival_model; XGBoost immunotherapy model, https://github.com/mlwalker123/CSP_immunotherapy_model.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695900/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae686","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies suggest cGAS-STING pathway may play a crucial role in the genesis and development of hepatocellular carcinoma (HCC), closely associated with classical pathways and tumor immunity. We aimed to develop models predicting survival and anti-PD-1/PD-L1 outcomes centered on the cGAS-STING pathway in HCC. We identified classical pathways highly correlated with cGAS-STING pathway and constructed transformer survival model preserving raw structure of pathways. We also developed explainable XGBoost model for predicting anti-PD-1/PD-L1 outcomes using SHAP algorithm. We trained and validated transformer survival model on pan-cancer cohort and tested it on three independent HCC cohorts. Using 0.5 as threshold across cohorts, we divided each HCC cohort into two groups and calculated P values with log-rank test. TCGA-LIHC: C-index = 0.750, P = 1.52e-11; ICGC-LIRI-JP: C-index = 0.741, P = .00138; GSE144269: C-index = 0.647, P = .0233. We trained and validated [area under the receiver operating characteristic curve (AUC) = 0.777] XGBoost model on immunotherapy datasets and tested it on GSE78220 (AUC = 0.789); we also tested XGBoost model on HCC anti-PD-L1 cohort (AUC = 0.719). Our deep learning model and XGBoost model demonstrate potential in predicting survival risks and anti-PD-1/PD-L1 outcomes in HCC. We deployed these two prediction models to the GitHub repository and provided detailed instructions for their usage: deep learning survival model, https://github.com/mlwalker123/CSP_survival_model; XGBoost immunotherapy model, https://github.com/mlwalker123/CSP_immunotherapy_model.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.