Real-time CBCT imaging and motion tracking via a single arbitrarily-angled x-ray projection by a joint dynamic reconstruction and motion estimation (DREME) framework.
Hua-Chieh Shao, Tielige Mengke, Tinsu Pan, You Zhang
{"title":"Real-time CBCT imaging and motion tracking via a single arbitrarily-angled x-ray projection by a joint dynamic reconstruction and motion estimation (DREME) framework.","authors":"Hua-Chieh Shao, Tielige Mengke, Tinsu Pan, You Zhang","doi":"10.1088/1361-6560/ada519","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Real-time cone-beam computed tomography (CBCT) provides instantaneous visualization of patient anatomy for image guidance, motion tracking, and online treatment adaptation in radiotherapy. While many real-time imaging and motion tracking methods leveraged patient-specific prior information to alleviate under-sampling challenges and meet the temporal constraint (<500 ms), the prior information can be outdated and introduce biases, thus compromising the imaging and motion tracking accuracy. To address this challenge, we developed a framework<u>d</u>ynamic<u>re</u>construction and<u>m</u>otion<u>e</u>stimation (DREME) for real-time CBCT imaging and motion estimation, without relying on patient-specific prior knowledge.<i>Approach.</i>DREME incorporates a deep learning-based real-time CBCT imaging and motion estimation method into a dynamic CBCT reconstruction framework. The reconstruction framework reconstructs a dynamic sequence of CBCTs in a data-driven manner from a standard pre-treatment scan, without requiring patient-specific prior knowledge. Meanwhile, a convolutional neural network-based motion encoder is jointly trained during the reconstruction to learn motion-related features relevant for real-time motion estimation, based on a single arbitrarily-angled x-ray projection. DREME was tested on digital phantom simulations and real patient studies.<i>Main Results.</i>DREME accurately solved 3D respiration-induced anatomical motion in real time (∼1.5 ms inference time for each x-ray projection). For the digital phantom studies, it achieved an average lung tumor center-of-mass localization error of 1.2 ± 0.9 mm (Mean ± SD). For the patient studies, it achieved a real-time tumor localization accuracy of 1.6 ± 1.6 mm in the projection domain.<i>Significance.</i>DREME achieves CBCT and volumetric motion estimation in real time from a single x-ray projection at arbitrary angles, paving the way for future clinical applications in intra-fractional motion management. In addition, it can be used for dose tracking and treatment assessment, when combined with real-time dose calculation.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747166/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ada519","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective.Real-time cone-beam computed tomography (CBCT) provides instantaneous visualization of patient anatomy for image guidance, motion tracking, and online treatment adaptation in radiotherapy. While many real-time imaging and motion tracking methods leveraged patient-specific prior information to alleviate under-sampling challenges and meet the temporal constraint (<500 ms), the prior information can be outdated and introduce biases, thus compromising the imaging and motion tracking accuracy. To address this challenge, we developed a frameworkdynamicreconstruction andmotionestimation (DREME) for real-time CBCT imaging and motion estimation, without relying on patient-specific prior knowledge.Approach.DREME incorporates a deep learning-based real-time CBCT imaging and motion estimation method into a dynamic CBCT reconstruction framework. The reconstruction framework reconstructs a dynamic sequence of CBCTs in a data-driven manner from a standard pre-treatment scan, without requiring patient-specific prior knowledge. Meanwhile, a convolutional neural network-based motion encoder is jointly trained during the reconstruction to learn motion-related features relevant for real-time motion estimation, based on a single arbitrarily-angled x-ray projection. DREME was tested on digital phantom simulations and real patient studies.Main Results.DREME accurately solved 3D respiration-induced anatomical motion in real time (∼1.5 ms inference time for each x-ray projection). For the digital phantom studies, it achieved an average lung tumor center-of-mass localization error of 1.2 ± 0.9 mm (Mean ± SD). For the patient studies, it achieved a real-time tumor localization accuracy of 1.6 ± 1.6 mm in the projection domain.Significance.DREME achieves CBCT and volumetric motion estimation in real time from a single x-ray projection at arbitrary angles, paving the way for future clinical applications in intra-fractional motion management. In addition, it can be used for dose tracking and treatment assessment, when combined with real-time dose calculation.
期刊介绍:
The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry