Temperature has an enhanced role on sediment N2O and N2 fluxes in wider rivers

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2025-01-04 DOI:10.1016/j.watres.2025.123095
Sibo Zhang, JunFeng Wang, Ziye Liu, Xinghui Xia, Xinxiao Wu, Xiaokang Li, Yi Liu, Zhihao Xu, Alessandra Marzadri, William H. McDowell, Yanpeng Cai, Zhifeng Yang
{"title":"Temperature has an enhanced role on sediment N2O and N2 fluxes in wider rivers","authors":"Sibo Zhang, JunFeng Wang, Ziye Liu, Xinghui Xia, Xinxiao Wu, Xiaokang Li, Yi Liu, Zhihao Xu, Alessandra Marzadri, William H. McDowell, Yanpeng Cai, Zhifeng Yang","doi":"10.1016/j.watres.2025.123095","DOIUrl":null,"url":null,"abstract":"Riverine N<sub>2</sub>O and N<sub>2</sub> fluxes, key components of the global nitrogen budget, are known to be influenced by river size (often represented by average river width), yet the specific mechanisms behind these effects remain unclear. This study examined how environmental and microbial factors influence sediment N<sub>2</sub>O and N<sub>2</sub> fluxes across rivers with varying widths (2.8 to 2,000 meters) in China. Sediment acted as sources of both N<sub>2</sub>O and N<sub>2</sub> emissions, with both N<sub>2</sub> fluxes (0.2 to 20.8 mmol m<sup>-2</sup> d<sup>-1</sup>) and N<sub>2</sub>O fluxes (0.7-54.2 μmol m<sup>-2</sup> d<sup>-1</sup>) decreasing significantly as river width increased. N<sub>2</sub> fluxes were positively correlated with denitrifying bacterial abundance, whereas N<sub>2</sub>O fluxes, when normalized by the abundance of denitrifying bacteria, were negatively correlated with N<sub>2</sub>O-reducing microbes. Water physicochemical factors, particularly temperature and nitrate, were more important drivers of these fluxes than sediment factors. Nitrate significantly increased denitrifying bacterial abundance, whereas higher temperatures enhanced cell-specific activity. Lower N<sub>2</sub>O and N<sub>2</sub> emissions in wider rivers were attributed to decreased denitrifying microbial abundance and lower denitrification rates, in addition to the commonly assumed reduction in exogenous N<sub>2</sub>O and N<sub>2</sub> inputs. Rolling regression analysis showed that nitrate concentration had a stronger effect on sediment N<sub>2</sub>O and N<sub>2</sub> fluxes in narrower rivers, whereas temperature was more influential in wider rivers. This difference is attributed to more stable nitrate concentrations and decreased nitrogen removal efficiency in wider rivers, while temperature variation remained consistent across all river widths. Beyond sediments, temperature had a greater effect on excess N<sub>2</sub>O concentrations than nitrate in the overlying water of wider rivers (&gt;165 meters), highlighting its broader impact. This study provides new biogeochemical insights into how river width influences sediment N<sub>2</sub>O and N<sub>2</sub> fluxes and highlights the importance of incorporating temperature into flux predictions, particularly for wider rivers.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"370 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123095","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Riverine N2O and N2 fluxes, key components of the global nitrogen budget, are known to be influenced by river size (often represented by average river width), yet the specific mechanisms behind these effects remain unclear. This study examined how environmental and microbial factors influence sediment N2O and N2 fluxes across rivers with varying widths (2.8 to 2,000 meters) in China. Sediment acted as sources of both N2O and N2 emissions, with both N2 fluxes (0.2 to 20.8 mmol m-2 d-1) and N2O fluxes (0.7-54.2 μmol m-2 d-1) decreasing significantly as river width increased. N2 fluxes were positively correlated with denitrifying bacterial abundance, whereas N2O fluxes, when normalized by the abundance of denitrifying bacteria, were negatively correlated with N2O-reducing microbes. Water physicochemical factors, particularly temperature and nitrate, were more important drivers of these fluxes than sediment factors. Nitrate significantly increased denitrifying bacterial abundance, whereas higher temperatures enhanced cell-specific activity. Lower N2O and N2 emissions in wider rivers were attributed to decreased denitrifying microbial abundance and lower denitrification rates, in addition to the commonly assumed reduction in exogenous N2O and N2 inputs. Rolling regression analysis showed that nitrate concentration had a stronger effect on sediment N2O and N2 fluxes in narrower rivers, whereas temperature was more influential in wider rivers. This difference is attributed to more stable nitrate concentrations and decreased nitrogen removal efficiency in wider rivers, while temperature variation remained consistent across all river widths. Beyond sediments, temperature had a greater effect on excess N2O concentrations than nitrate in the overlying water of wider rivers (>165 meters), highlighting its broader impact. This study provides new biogeochemical insights into how river width influences sediment N2O and N2 fluxes and highlights the importance of incorporating temperature into flux predictions, particularly for wider rivers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Unveiling the reaction chemistry of sulfoxides during water chlorination. Integrated real-time intelligent control for wastewater treatment plants: data-driven modeling for enhanced prediction and regulatory strategies Multi-omics Reveals Mechanism of Hydroxylamine-Enhanced Ultimate Nitrogen Removal in Pilot-Scale Anaerobic/Aerobic/Anoxic System Longitudinal metagenomic analysis on antibiotic resistome, mobilome, and microbiome of river ecosystems in a sub-tropical metropolitan city Lithium complexing strategy based on host-guest recognition for efficient Mg2+/Li+ separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1