Hongrae Im, Duc Anh Nguyen, Dong-gun Jun, Sojeong Jang, Am Jang
{"title":"Efficiently Enhanced Short-Chain Fatty Acids (SCFAs) Recovery from Food Waste Condensate: Real-Time Wettability Monitoring with Supported Liquid Membrane Contactor","authors":"Hongrae Im, Duc Anh Nguyen, Dong-gun Jun, Sojeong Jang, Am Jang","doi":"10.1016/j.watres.2025.123093","DOIUrl":null,"url":null,"abstract":"Food waste condensate (FWC) is a valuable source for recovering short-chain fatty acids (SCFAs) through methods such as supported liquid membrane contactors. Containing organic compounds like acetate, propionate, and butyrate, FWC offers a rich substrate for efficient SCFA extraction. Recovering SCFAs from FWC provides notable environmental advantages, including reducing waste and generating high-value products for industries such as bioenergy and chemical production. This process not only contributes to carbon neutrality by recycling waste streams but also establishes a sustainable method for producing bio-based products from FWC. This study investigated the recovery efficiency and transport mechanisms of SCFAs from SCFA-rich wastewater (e.g., FWC) using both virgin hydrophobic PVDF membranes and membranes filled with organic extractants like tertiary amines (trihexhylamine and trioctylamine) and tertiary phosphines (trihexylphosphine and trioctylphosphine). Recovery efficiency for butyric acid was significantly improved when TOA (trioctylamine) was used, achieving 71.96%, while acetic acid showed a lower recovery of 0.95%, highlighting TOA's strong affinity for butyric acid due to ion-amine complex formation. The study also utilized real-time optical coherence tomography (OCT)-based monitoring to observe membrane wetting, finding that the virgin PVDF membrane was more prone to wetting and fouling, with a significant reduction in contact angle and surface energy. In contrast, the PVDF-TOA membrane demonstrated better resistance to wetting, showing minimal changes in contact angle and porosity, underscoring its potential for long-term applications in membrane contactors.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"37 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123093","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Food waste condensate (FWC) is a valuable source for recovering short-chain fatty acids (SCFAs) through methods such as supported liquid membrane contactors. Containing organic compounds like acetate, propionate, and butyrate, FWC offers a rich substrate for efficient SCFA extraction. Recovering SCFAs from FWC provides notable environmental advantages, including reducing waste and generating high-value products for industries such as bioenergy and chemical production. This process not only contributes to carbon neutrality by recycling waste streams but also establishes a sustainable method for producing bio-based products from FWC. This study investigated the recovery efficiency and transport mechanisms of SCFAs from SCFA-rich wastewater (e.g., FWC) using both virgin hydrophobic PVDF membranes and membranes filled with organic extractants like tertiary amines (trihexhylamine and trioctylamine) and tertiary phosphines (trihexylphosphine and trioctylphosphine). Recovery efficiency for butyric acid was significantly improved when TOA (trioctylamine) was used, achieving 71.96%, while acetic acid showed a lower recovery of 0.95%, highlighting TOA's strong affinity for butyric acid due to ion-amine complex formation. The study also utilized real-time optical coherence tomography (OCT)-based monitoring to observe membrane wetting, finding that the virgin PVDF membrane was more prone to wetting and fouling, with a significant reduction in contact angle and surface energy. In contrast, the PVDF-TOA membrane demonstrated better resistance to wetting, showing minimal changes in contact angle and porosity, underscoring its potential for long-term applications in membrane contactors.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.