Microstructural analysis and its correlation to anneal hardening in a cobalt-nickel-based superalloy

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Materialia Pub Date : 2025-01-03 DOI:10.1016/j.actamat.2024.120705
Qing Cheng, Fusheng Tan, Tianyu Zhang, Prajna Paramita Mohapatra, Dongsheng Wen, Huahai Mao, Xiaoqing Li, Bin Gan, Mingquan Xu, Xiandong Xu
{"title":"Microstructural analysis and its correlation to anneal hardening in a cobalt-nickel-based superalloy","authors":"Qing Cheng, Fusheng Tan, Tianyu Zhang, Prajna Paramita Mohapatra, Dongsheng Wen, Huahai Mao, Xiaoqing Li, Bin Gan, Mingquan Xu, Xiandong Xu","doi":"10.1016/j.actamat.2024.120705","DOIUrl":null,"url":null,"abstract":"Anneal hardening has been commonly observed in single-phase solid solutions, including face-centered cubic (FCC) alloys containing transitional-metal elements. However, the underlying mechanisms governing this effect have remained unclear due to a lack of direct evidence. In this study, we utilize multi-scale <em>in-situ</em> characterizations to thoroughly investigate the microstructural evolution during annealing of an MP35N (Co<sub>35</sub>Ni<sub>35</sub>Cr<sub>24</sub>Mo<sub>6</sub>, at.%) alloy. Our findings reveal negligible differences in the crystal structure, grain boundary (GB) character, and dislocation structure before and after annealing at 550 °C. However, <em>in-situ</em> transmission electron microscopy heating experiments and atomic-resolution energy-dispersive spectroscopy mappings disclose that the 550 °C annealing promotes nanoscale segregation of Mo into GBs, driven by the reduced GB energy. These segregated Mo atoms engage in strong charge exchanges with neighboring atoms, enhancing the GB's cohesive strength and improving the resistance to dislocation motion due to the increased strain field near the GBs. Consequently, the GB strengthening effect is enhanced, leading to significant anneal hardening in the fine-grained sample (3.2 μm) with Mo segregation, while no hardening is observed in the coarse-grained sample (202.2 μm) lacking Mo segregation. Furthermore, we demonstrate that annealing at higher temperatures triggers an interfacial phase transition from the FCC to a <em>μ</em> phase through spinodal decomposition accompanied by significant dislocation recovery, which paradoxically weakens the anneal hardening effect. These findings provide deeper insights into the anneal hardening phenomena and offer valuable guidance for optimizing cold working and heat treatment processes in the further development of high-performance structural alloys.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"34 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120705","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Anneal hardening has been commonly observed in single-phase solid solutions, including face-centered cubic (FCC) alloys containing transitional-metal elements. However, the underlying mechanisms governing this effect have remained unclear due to a lack of direct evidence. In this study, we utilize multi-scale in-situ characterizations to thoroughly investigate the microstructural evolution during annealing of an MP35N (Co35Ni35Cr24Mo6, at.%) alloy. Our findings reveal negligible differences in the crystal structure, grain boundary (GB) character, and dislocation structure before and after annealing at 550 °C. However, in-situ transmission electron microscopy heating experiments and atomic-resolution energy-dispersive spectroscopy mappings disclose that the 550 °C annealing promotes nanoscale segregation of Mo into GBs, driven by the reduced GB energy. These segregated Mo atoms engage in strong charge exchanges with neighboring atoms, enhancing the GB's cohesive strength and improving the resistance to dislocation motion due to the increased strain field near the GBs. Consequently, the GB strengthening effect is enhanced, leading to significant anneal hardening in the fine-grained sample (3.2 μm) with Mo segregation, while no hardening is observed in the coarse-grained sample (202.2 μm) lacking Mo segregation. Furthermore, we demonstrate that annealing at higher temperatures triggers an interfacial phase transition from the FCC to a μ phase through spinodal decomposition accompanied by significant dislocation recovery, which paradoxically weakens the anneal hardening effect. These findings provide deeper insights into the anneal hardening phenomena and offer valuable guidance for optimizing cold working and heat treatment processes in the further development of high-performance structural alloys.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
期刊最新文献
Predicting grain boundary sliding in metallic materials A Computational High Throughput Search of Symmetric Tilt Grain Boundaries in Cerium Oxide Tailoring the Ionic Conductivity of Composite Electrolyte by La-Doping Regulated Li4Ti5O12 for Solid State Lithium Metal Batteries Interpretable and Physics-Informed Modeling of Solidification in Alloy Systems: A Generalized Framework for Multi-Component Prediction Re enhancement effects: Development of a ReaxFFNiAlRe reactive force field for Ni-based superalloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1