{"title":"Gold in pyrite revisited: insights into remobilization during deformation using electron backscatter diffraction and LA-ICP-MS","authors":"Pascal Ouiya, Didier Béziat, Stefano Salvi, German Velásquez, Séta Naba, Arnaud Proietti","doi":"10.1007/s00126-024-01346-4","DOIUrl":null,"url":null,"abstract":"<p>In a gold deposit near Nassara, southern Burkina Faso, gold occurs closely associated with pyrite within a network of veins hosted by metavolcanic and metasedimentary rocks. Using SEM and LA-ICP-MS analyses, we identified three generations of pyrite with distinct roles in gold mineralization. Pyrite 1 (Py1) formed early during mineralization, replacing alteration minerals like ankerite in metabasalt. Pyrite 2 (Py2) developed around Py1 in pressure shadows caused by localized micro-shear zone reactivation during successive micro-seismic events. Pyrite 2 is enriched in As and Au, unlike Py1. Pyrite 3 (Py3), unrelated to mineralization, formed at a later stage. Gold occurs in pyrite as micro-inclusions (in Py1 and Py2), fracture-fillings (mainly in Py2), and within the pyrite structure as invisible gold, including nanoparticles (predominantly in Py2). Combining electron backscatter diffraction (EBSD) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis reveals that deformation-induced misorientation of pyrite facilitated the remobilization of invisible gold, which subsequently re-precipitated as colloidal particles along sub-grain boundaries and within fractures, mimicking visible inclusions. These findings demonstrate that gold perceived as inclusions (visible or invisible) often precipitates within micro/nano-fissures and sub-grain boundaries during remobilization. This highlights the critical importance of thorough ore characterization for accurately determining gold deportment. Such insights advance our understanding of mineralization processes and support the development of more efficient recovery strategies.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"32 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-024-01346-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In a gold deposit near Nassara, southern Burkina Faso, gold occurs closely associated with pyrite within a network of veins hosted by metavolcanic and metasedimentary rocks. Using SEM and LA-ICP-MS analyses, we identified three generations of pyrite with distinct roles in gold mineralization. Pyrite 1 (Py1) formed early during mineralization, replacing alteration minerals like ankerite in metabasalt. Pyrite 2 (Py2) developed around Py1 in pressure shadows caused by localized micro-shear zone reactivation during successive micro-seismic events. Pyrite 2 is enriched in As and Au, unlike Py1. Pyrite 3 (Py3), unrelated to mineralization, formed at a later stage. Gold occurs in pyrite as micro-inclusions (in Py1 and Py2), fracture-fillings (mainly in Py2), and within the pyrite structure as invisible gold, including nanoparticles (predominantly in Py2). Combining electron backscatter diffraction (EBSD) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis reveals that deformation-induced misorientation of pyrite facilitated the remobilization of invisible gold, which subsequently re-precipitated as colloidal particles along sub-grain boundaries and within fractures, mimicking visible inclusions. These findings demonstrate that gold perceived as inclusions (visible or invisible) often precipitates within micro/nano-fissures and sub-grain boundaries during remobilization. This highlights the critical importance of thorough ore characterization for accurately determining gold deportment. Such insights advance our understanding of mineralization processes and support the development of more efficient recovery strategies.
期刊介绍:
The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.