CSTrans: cross-subdomain transformer for unsupervised domain adaptation

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2025-01-04 DOI:10.1007/s40747-024-01709-4
Junchi Liu, Xiang Zhang, Zhigang Luo
{"title":"CSTrans: cross-subdomain transformer for unsupervised domain adaptation","authors":"Junchi Liu, Xiang Zhang, Zhigang Luo","doi":"10.1007/s40747-024-01709-4","DOIUrl":null,"url":null,"abstract":"<p>Unsupervised domain adaptation (UDA) aims to make full use of a labeled source domain data to classify an unlabeled target domain data. With the success of Transformer in various vision tasks, existing UDA methods borrow strong Transformer framework to learn global domain-invariant feature representation from the domain level or category level. Of them, the cross-attention as a key component acts for the cross-domain feature alignment, benefiting from its robustness. Intriguingly, we find that the robustness makes the model insensitive to the sub-grouping property within the same category of both source and target domains, known as the subdomain structure. This is because the robustness regards some fine-grained information as the noises and removes them. To overcome this shortcoming, we propose an end-to-end Cross-Subdomain Transformer framework (CSTrans) to exploit the transferability of subdomain structures and the robustness of cross-attention to calibrate inter-domain features. Specifically, there are two innovations in this paper. First, we devise an efficient Index Matching Module (IMM) to calculate the cross-attention of the same category in different domains and learn the domain-invariant representation. This not only simplifies the traditional daunting image-pair selection but also paves the safer way for guarding fine-grained subdomain information. This is because the IMM implements reliable feature confusion. Second, we introduce discriminative clustering to mine the subdomain structures in the same category and further learn subdomain discrimination. Both aspects cooperates with each other for fewer training stages. We perform extensive studies on five benchmarks, and the respective experimental results show that, as compared to existing UDA siblings, CSTrans attains remarkable results with average classification accuracy of 94.3%, 92.1%, and 85.4% on datasets Office-31, ImageCLEF-DA, and Office-Home, respectively.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"28 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01709-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Unsupervised domain adaptation (UDA) aims to make full use of a labeled source domain data to classify an unlabeled target domain data. With the success of Transformer in various vision tasks, existing UDA methods borrow strong Transformer framework to learn global domain-invariant feature representation from the domain level or category level. Of them, the cross-attention as a key component acts for the cross-domain feature alignment, benefiting from its robustness. Intriguingly, we find that the robustness makes the model insensitive to the sub-grouping property within the same category of both source and target domains, known as the subdomain structure. This is because the robustness regards some fine-grained information as the noises and removes them. To overcome this shortcoming, we propose an end-to-end Cross-Subdomain Transformer framework (CSTrans) to exploit the transferability of subdomain structures and the robustness of cross-attention to calibrate inter-domain features. Specifically, there are two innovations in this paper. First, we devise an efficient Index Matching Module (IMM) to calculate the cross-attention of the same category in different domains and learn the domain-invariant representation. This not only simplifies the traditional daunting image-pair selection but also paves the safer way for guarding fine-grained subdomain information. This is because the IMM implements reliable feature confusion. Second, we introduce discriminative clustering to mine the subdomain structures in the same category and further learn subdomain discrimination. Both aspects cooperates with each other for fewer training stages. We perform extensive studies on five benchmarks, and the respective experimental results show that, as compared to existing UDA siblings, CSTrans attains remarkable results with average classification accuracy of 94.3%, 92.1%, and 85.4% on datasets Office-31, ImageCLEF-DA, and Office-Home, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CSTrans:用于无监督域自适应的跨子域变压器
无监督域自适应(UDA)的目的是充分利用已标记的源域数据对未标记的目标域数据进行分类。随着Transformer在各种视觉任务中的成功,现有的UDA方法借用了强大的Transformer框架,从域级或类别级学习全局域不变特征表示。其中,交叉注意作为跨域特征对齐的关键组成部分,具有鲁棒性。有趣的是,我们发现鲁棒性使得模型对源域和目标域(称为子域结构)的同一类别中的子分组属性不敏感。这是因为鲁棒性将一些细粒度信息视为噪声并将其去除。为了克服这一缺点,我们提出了一个端到端的跨子域变压器框架(CSTrans),利用子域结构的可转移性和交叉关注的鲁棒性来校准域间特征。具体而言,本文有两个创新点。首先,我们设计了一个高效的索引匹配模块(Index Matching Module, IMM)来计算同一类别在不同领域的交叉关注,并学习领域不变表示。这不仅简化了传统令人生畏的图像对选择,而且为保护细粒度子域信息铺平了更安全的道路。这是因为IMM实现了可靠的特性混淆。其次,引入判别聚类来挖掘同一类别的子域结构,进一步学习子域判别;这两个方面相互合作,减少了训练阶段。我们在五个基准上进行了广泛的研究,各自的实验结果表明,与现有的UDA兄弟姐妹相比,CSTrans在Office-31、ImageCLEF-DA和Office-Home数据集上的平均分类准确率分别为94.3%、92.1%和85.4%,取得了显著的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
Tailored meta-learning for dual trajectory transformer: advancing generalized trajectory prediction Control strategy of robotic manipulator based on multi-task reinforcement learning Explainable and secure framework for autism prediction using multimodal eye tracking and kinematic data A novel three-way distance-based fuzzy large margin distribution machine for imbalance classification Chaos-enhanced metaheuristics: classification, comparison, and convergence analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1