Improving 30-meter global impervious surface area (GISA) mapping: New method and dataset

IF 10.6 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL ISPRS Journal of Photogrammetry and Remote Sensing Pub Date : 2024-12-30 DOI:10.1016/j.isprsjprs.2024.12.023
Huiqun Ren, Xin Huang, Jie Yang, Guoqing Zhou
{"title":"Improving 30-meter global impervious surface area (GISA) mapping: New method and dataset","authors":"Huiqun Ren, Xin Huang, Jie Yang, Guoqing Zhou","doi":"10.1016/j.isprsjprs.2024.12.023","DOIUrl":null,"url":null,"abstract":"Timely and accurate monitoring of impervious surface areas (ISA) is crucial for effective urban planning and sustainable development. Recent advances in remote sensing technologies have enabled global ISA mapping at fine spatial resolution (<30 m) over long time spans (>30 years), offering the opportunity to track global ISA dynamics. However, existing 30 m global long-term ISA datasets suffer from omission and commission issues, affecting their accuracy in practical applications. To address these challenges, we proposed a novel global long-term ISA mapping method and generated a new 30 m global ISA dataset from 1985 to 2021, namely GISA-new. Specifically, to reduce ISA omissions, a multi-temporal Continuous Change Detection and Classification (CCDC) algorithm that accounts for newly added ISA regions (NA-CCDC) was proposed to enhance the diversity and representativeness of the training samples. Meanwhile, a multi-scale iterative (MIA) method was proposed to automatically remove global commissions of various sizes and types. Finally, we collected two independent test datasets with over 100,000 test samples globally for accuracy assessment. Results showed that GISA-new outperformed other existing global ISA datasets, such as GISA, WSF-evo, GAIA, and GAUD, achieving the highest overall accuracy (93.12 %), the lowest omission errors (10.50 %), and the lowest commission errors (3.52 %). Furthermore, the spatial distribution of global ISA omissions and commissions was analyzed, revealing more mapping uncertainties in the Northern Hemisphere. In general, the proposed method in this study effectively addressed global ISA omissions and removed commissions at different scales. The generated high-quality GISA-new can serve as a fundamental parameter for a more comprehensive understanding of global urbanization.","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"27 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.isprsjprs.2024.12.023","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Timely and accurate monitoring of impervious surface areas (ISA) is crucial for effective urban planning and sustainable development. Recent advances in remote sensing technologies have enabled global ISA mapping at fine spatial resolution (<30 m) over long time spans (>30 years), offering the opportunity to track global ISA dynamics. However, existing 30 m global long-term ISA datasets suffer from omission and commission issues, affecting their accuracy in practical applications. To address these challenges, we proposed a novel global long-term ISA mapping method and generated a new 30 m global ISA dataset from 1985 to 2021, namely GISA-new. Specifically, to reduce ISA omissions, a multi-temporal Continuous Change Detection and Classification (CCDC) algorithm that accounts for newly added ISA regions (NA-CCDC) was proposed to enhance the diversity and representativeness of the training samples. Meanwhile, a multi-scale iterative (MIA) method was proposed to automatically remove global commissions of various sizes and types. Finally, we collected two independent test datasets with over 100,000 test samples globally for accuracy assessment. Results showed that GISA-new outperformed other existing global ISA datasets, such as GISA, WSF-evo, GAIA, and GAUD, achieving the highest overall accuracy (93.12 %), the lowest omission errors (10.50 %), and the lowest commission errors (3.52 %). Furthermore, the spatial distribution of global ISA omissions and commissions was analyzed, revealing more mapping uncertainties in the Northern Hemisphere. In general, the proposed method in this study effectively addressed global ISA omissions and removed commissions at different scales. The generated high-quality GISA-new can serve as a fundamental parameter for a more comprehensive understanding of global urbanization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ISPRS Journal of Photogrammetry and Remote Sensing
ISPRS Journal of Photogrammetry and Remote Sensing 工程技术-成像科学与照相技术
CiteScore
21.00
自引率
6.30%
发文量
273
审稿时长
40 days
期刊介绍: The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive. P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields. In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.
期刊最新文献
Scattering mechanism-guided zero-shot PolSAR target recognition Underwater image captioning: Challenges, models, and datasets Developing a spatiotemporal fusion framework for generating daily UAV images in agricultural areas using publicly available satellite data Large-scale rice mapping under spatiotemporal heterogeneity using multi-temporal SAR images and explainable deep learning Improving 30-meter global impervious surface area (GISA) mapping: New method and dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1