Mikhail Alfimov, Gwenaël Ferrando, Vladimir Kazakov, Enrico Olivucci
{"title":"Checkerboard CFT","authors":"Mikhail Alfimov, Gwenaël Ferrando, Vladimir Kazakov, Enrico Olivucci","doi":"10.1007/JHEP01(2025)015","DOIUrl":null,"url":null,"abstract":"<p>The Checkerboard conformal field theory is an interesting representative of a large class of non-unitary, logarithmic Fishnet CFTs (FCFT) in arbitrary dimension which have been intensively studied in the last years. Its planar Feynman graphs have the structure of a regular square lattice with checkerboard colouring. Such graphs are integrable since each coloured cell of the lattice is equal to an R-matrix in the principal series representations of the conformal group. We compute perturbatively and numerically the anomalous dimension of the shortest single-trace operator in two reductions of the Checkerboard CFT: the first one corresponds to the Fishnet limit of the twisted ABJM theory in 3D, whereas the spectrum in the second, 2D reduction contains the energy of the BFKL Pomeron. We derive an analytic expression for the Checkerboard analogues of Basso-Dixon 4-point functions, as well as for the class of Diamond-type 4-point graphs with disc topology. The properties of the latter are studied in terms of OPE for operators with open indices. We prove that the spectrum of the theory receives corrections only at even orders in the loop expansion and we conjecture such a modification of Checkerboard CFT where quantum corrections occur only with a given periodicity in the loop order.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)015.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP01(2025)015","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The Checkerboard conformal field theory is an interesting representative of a large class of non-unitary, logarithmic Fishnet CFTs (FCFT) in arbitrary dimension which have been intensively studied in the last years. Its planar Feynman graphs have the structure of a regular square lattice with checkerboard colouring. Such graphs are integrable since each coloured cell of the lattice is equal to an R-matrix in the principal series representations of the conformal group. We compute perturbatively and numerically the anomalous dimension of the shortest single-trace operator in two reductions of the Checkerboard CFT: the first one corresponds to the Fishnet limit of the twisted ABJM theory in 3D, whereas the spectrum in the second, 2D reduction contains the energy of the BFKL Pomeron. We derive an analytic expression for the Checkerboard analogues of Basso-Dixon 4-point functions, as well as for the class of Diamond-type 4-point graphs with disc topology. The properties of the latter are studied in terms of OPE for operators with open indices. We prove that the spectrum of the theory receives corrections only at even orders in the loop expansion and we conjecture such a modification of Checkerboard CFT where quantum corrections occur only with a given periodicity in the loop order.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).