{"title":"Scalar-tensor theories of gravity from a thermodynamic viewpoint","authors":"Krishnakanta Bhattacharya, Sumanta Chakraborty","doi":"10.1007/JHEP01(2025)037","DOIUrl":null,"url":null,"abstract":"<p>In any diffeomorphism invariant theory of gravity, one can define a Noether charge arising from the invariance of the Lagrangian under diffeomorphisms. We have determined the Noether charge for scalar-tensor theories of gravity, in which case the gravity is mediated by the metric tensor as well as by a scalar degree of freedom. In particular, we demonstrate that the total Noether charge within an appropriate spatial volume can be related to the heat content of the boundary surface. For static spacetimes, in these theories, there exist an “equipartition” between properly defined bulk and surface degrees of freedom. While the dynamical evolution of spacetime in these theories of scalar-tensor gravity arises due to the departure from the equipartition regime. These results demonstrate that thermodynamical interpretations for gravitational theories transcend Einstein and Lovelock theories of gravity, holding true for theories with additional scalar degrees of freedom as well. Moreover, they hold in both the Jordan and the Einstein frames. However, it turns out that there are two dynamically equivalent representations of the scalar-tensor theory in the Jordan frame, differing by total derivatives in the action, which are thermodynamically inequivalent. This depicts the importance of having a thermodynamic description, which can be used in distinguishing various dynamically equivalent representations of gravity theories beyond Einstein.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2025)037.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP01(2025)037","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
In any diffeomorphism invariant theory of gravity, one can define a Noether charge arising from the invariance of the Lagrangian under diffeomorphisms. We have determined the Noether charge for scalar-tensor theories of gravity, in which case the gravity is mediated by the metric tensor as well as by a scalar degree of freedom. In particular, we demonstrate that the total Noether charge within an appropriate spatial volume can be related to the heat content of the boundary surface. For static spacetimes, in these theories, there exist an “equipartition” between properly defined bulk and surface degrees of freedom. While the dynamical evolution of spacetime in these theories of scalar-tensor gravity arises due to the departure from the equipartition regime. These results demonstrate that thermodynamical interpretations for gravitational theories transcend Einstein and Lovelock theories of gravity, holding true for theories with additional scalar degrees of freedom as well. Moreover, they hold in both the Jordan and the Einstein frames. However, it turns out that there are two dynamically equivalent representations of the scalar-tensor theory in the Jordan frame, differing by total derivatives in the action, which are thermodynamically inequivalent. This depicts the importance of having a thermodynamic description, which can be used in distinguishing various dynamically equivalent representations of gravity theories beyond Einstein.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).