{"title":"Biobased Polyesters with Ultrahigh UV Shielding and Water Degradation Derived from Multifunctional Tetracyclic Diesters.","authors":"Huan Liu, Yang Yu","doi":"10.1021/acs.biomac.4c01252","DOIUrl":null,"url":null,"abstract":"<p><p>The development of biobased polyesters with the combination of high UV shielding and degradability is a significant challenge. Herein, three 4-membered cyclic monomers containing two pyrrolidone and two furan rings were prepared by the aza-Michael addition of biobased bifuran diamine and dimethyl itaconate (DMI). They were available in melt polycondensation reactions with various diols to synthesize biobased polyesters. The bifuran structure endowed the polyesters with ultrahigh UV-shielding cutoff values of up to 443 nm, which achieved the highest UV-shielding results among the commercial polyesters. The bipyrrolidone structure conferred high hydrolysis sensitivity to the polyesters, which facilitated hydrolytic degradation of the polyester in an aqueous environment. The variability of the link structure between the multirings of the three monomers can regulate the various properties of the polyesters. Overall, the 4-membered cyclic monomers are promising precursors for sustainable biobased materials in providing high UV shielding and hydrolysis sensitivity.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"943-953"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01252","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of biobased polyesters with the combination of high UV shielding and degradability is a significant challenge. Herein, three 4-membered cyclic monomers containing two pyrrolidone and two furan rings were prepared by the aza-Michael addition of biobased bifuran diamine and dimethyl itaconate (DMI). They were available in melt polycondensation reactions with various diols to synthesize biobased polyesters. The bifuran structure endowed the polyesters with ultrahigh UV-shielding cutoff values of up to 443 nm, which achieved the highest UV-shielding results among the commercial polyesters. The bipyrrolidone structure conferred high hydrolysis sensitivity to the polyesters, which facilitated hydrolytic degradation of the polyester in an aqueous environment. The variability of the link structure between the multirings of the three monomers can regulate the various properties of the polyesters. Overall, the 4-membered cyclic monomers are promising precursors for sustainable biobased materials in providing high UV shielding and hydrolysis sensitivity.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.