Nicholas J Williams, Lara Kabalan, Ljiljana Stojanovic, Viktor Zólyomi, Edward O Pyzer-Knapp
{"title":"Hessian QM9: A quantum chemistry database of molecular Hessians in implicit solvents.","authors":"Nicholas J Williams, Lara Kabalan, Ljiljana Stojanovic, Viktor Zólyomi, Edward O Pyzer-Knapp","doi":"10.1038/s41597-024-04361-2","DOIUrl":null,"url":null,"abstract":"<p><p>A significant challenge in computational chemistry is developing approximations that accelerate ab initio methods while preserving accuracy. Machine learning interatomic potentials (MLIPs) have emerged as a promising solution for constructing atomistic potentials that can be transferred across different molecular and crystalline systems. Most MLIPs are trained only on energies and forces in vacuum, while an improved description of the potential energy surface could be achieved by including the curvature of the potential energy surface. We present Hessian QM9, the first database of equilibrium configurations and numerical Hessian matrices, consisting of 41,645 molecules from the QM9 dataset at the ωB97x/6-31G* level. Molecular Hessians were calculated in vacuum, as well as water, tetrahydrofuran, and toluene using an implicit solvation model. To demonstrate the utility of this dataset, we show that incorporating second derivatives of the potential energy surface into the loss function of a MLIP significantly improves the prediction of vibrational frequencies in all solvent environments, thus making this dataset extremely useful for studying organic molecules in realistic solvent environments for experimental characterization.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"9"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698913/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04361-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A significant challenge in computational chemistry is developing approximations that accelerate ab initio methods while preserving accuracy. Machine learning interatomic potentials (MLIPs) have emerged as a promising solution for constructing atomistic potentials that can be transferred across different molecular and crystalline systems. Most MLIPs are trained only on energies and forces in vacuum, while an improved description of the potential energy surface could be achieved by including the curvature of the potential energy surface. We present Hessian QM9, the first database of equilibrium configurations and numerical Hessian matrices, consisting of 41,645 molecules from the QM9 dataset at the ωB97x/6-31G* level. Molecular Hessians were calculated in vacuum, as well as water, tetrahydrofuran, and toluene using an implicit solvation model. To demonstrate the utility of this dataset, we show that incorporating second derivatives of the potential energy surface into the loss function of a MLIP significantly improves the prediction of vibrational frequencies in all solvent environments, thus making this dataset extremely useful for studying organic molecules in realistic solvent environments for experimental characterization.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.