Qiushi Feng, Danjo De Chavez, Jan Kihlberg, Vasanthanathan Poongavanam
{"title":"A membrane permeability database for nonpeptidic macrocycles.","authors":"Qiushi Feng, Danjo De Chavez, Jan Kihlberg, Vasanthanathan Poongavanam","doi":"10.1038/s41597-024-04302-z","DOIUrl":null,"url":null,"abstract":"<p><p>The process of developing new drugs is arduous and costly, particularly for targets classified as \"difficult-to-drug.\" Macrocycles show a particular ability to modulate difficult-to-drug targets, including protein-protein interactions, while still allowing oral administration. However, the determination of membrane permeability, critical for reaching intracellular targets and for oral bioavailability, is laborious and expensive. In silico methods are a cost-effective alternative, enabling predictions prior to compound synthesis. Here, we present a comprehensive online database ( https://swemacrocycledb.com/ ), housing 5638 membrane permeability datapoints for 4216 nonpeptidic macrocycles, curated from the literature, patents, and bioactivity repositories. In addition, we present a new descriptor, the \"amide ratio\" (AR), that quantifies the peptidic nature of macrocyclic compounds, enabling the classification of peptidic, semipeptidic, and nonpeptidic macrocycles. Overall, this resource fills a gap among existing databases, offering valuable insights into the membrane permeability of nonpeptidic and semipeptidic macrocycles, and facilitating predictions for drug discovery projects.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"10"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698989/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04302-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The process of developing new drugs is arduous and costly, particularly for targets classified as "difficult-to-drug." Macrocycles show a particular ability to modulate difficult-to-drug targets, including protein-protein interactions, while still allowing oral administration. However, the determination of membrane permeability, critical for reaching intracellular targets and for oral bioavailability, is laborious and expensive. In silico methods are a cost-effective alternative, enabling predictions prior to compound synthesis. Here, we present a comprehensive online database ( https://swemacrocycledb.com/ ), housing 5638 membrane permeability datapoints for 4216 nonpeptidic macrocycles, curated from the literature, patents, and bioactivity repositories. In addition, we present a new descriptor, the "amide ratio" (AR), that quantifies the peptidic nature of macrocyclic compounds, enabling the classification of peptidic, semipeptidic, and nonpeptidic macrocycles. Overall, this resource fills a gap among existing databases, offering valuable insights into the membrane permeability of nonpeptidic and semipeptidic macrocycles, and facilitating predictions for drug discovery projects.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.