Modeling and analysis of explicit dynamics of foot landing.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Medical & Biological Engineering & Computing Pub Date : 2025-01-04 DOI:10.1007/s11517-024-03271-0
Wu Ren, Ziya Zhao, Shuaiheng He, Xueling Zhang, Kailu Zhang, Yawei Li, Fei Lin, Zhenghui Wang, Guoan Zhao, Jinlong Chang, Qianfang Jia, Yi Yu, Jia Li
{"title":"Modeling and analysis of explicit dynamics of foot landing.","authors":"Wu Ren, Ziya Zhao, Shuaiheng He, Xueling Zhang, Kailu Zhang, Yawei Li, Fei Lin, Zhenghui Wang, Guoan Zhao, Jinlong Chang, Qianfang Jia, Yi Yu, Jia Li","doi":"10.1007/s11517-024-03271-0","DOIUrl":null,"url":null,"abstract":"<p><p>The research aims to investigate the mechanical response of footfalls at different velocities to understand the mechanism of heel injury and provide a scientific basis for the prevention and treatment of heel fractures. A three-dimensional solid model of foot drop was constructed using anatomical structures segmented from medical CT scans, including bone, cartilage, ligaments, plantar fascia, and soft tissues, and the impact velocities of the foot were set to be 2 m/s, 4 m/s, 6 m/s, 8 m/s, and 10 m/s. Explicit kinetic analysis methods were used to investigate the mechanical response of the foot landing with different speeds to explore the damage mechanism of heel bone at different impact velocities. Lower impact velocities result in relatively low stress on the medial cortex and posterior talar articular bony surfaces, which may result in minor injury or stress adaptation in the heel. As the impact velocity increases, the stresses on the medial cortex and posterior taller articular surface also increase significantly, greatly raising the risk of heel fractures. This study holds significant implications for safeguarding foot health and enhancing the safety of athletes and individuals engaged in high-impact sports.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03271-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The research aims to investigate the mechanical response of footfalls at different velocities to understand the mechanism of heel injury and provide a scientific basis for the prevention and treatment of heel fractures. A three-dimensional solid model of foot drop was constructed using anatomical structures segmented from medical CT scans, including bone, cartilage, ligaments, plantar fascia, and soft tissues, and the impact velocities of the foot were set to be 2 m/s, 4 m/s, 6 m/s, 8 m/s, and 10 m/s. Explicit kinetic analysis methods were used to investigate the mechanical response of the foot landing with different speeds to explore the damage mechanism of heel bone at different impact velocities. Lower impact velocities result in relatively low stress on the medial cortex and posterior talar articular bony surfaces, which may result in minor injury or stress adaptation in the heel. As the impact velocity increases, the stresses on the medial cortex and posterior taller articular surface also increase significantly, greatly raising the risk of heel fractures. This study holds significant implications for safeguarding foot health and enhancing the safety of athletes and individuals engaged in high-impact sports.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
期刊最新文献
Filter bank temporally delayed CCA for uncalibrated SSVEP-BCI. A review of deep learning methods for gastrointestinal diseases classification applied in computer-aided diagnosis system. An improved algorithm for salient object detection of microscope based on U2-Net. Classification of diabetic retinopathy algorithm based on a novel dual-path multi-module model. Comparative biomechanical analysis of a conventional/novel hip prosthetic socket.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1