{"title":"Correlation between polygenic risk scores of depression and cortical morphology networks.","authors":"Qian Gong, Wei Wang, Zhaowen Nie, Simeng Ma, Enqi Zhou, Zipeng Deng, Xin-Hui Xie, Honggang Lyu, Mian-Mian Chen, Lijun Kang, Zhongchun Liu","doi":"10.1503/jpn.240140","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cortical morphometry is an intermediate phenotype that is closely related to the genetics and onset of major depressive disorder (MDD), and cortical morphometric networks are considered more relevant to disease mechanisms than brain regions. We sought to investigate changes in cortical morphometric networks in MDD and their relationship with genetic risk in healthy controls.</p><p><strong>Methods: </strong>We recruited healthy controls and patients with MDD of Han Chinese descent. Participants underwent DNA extraction and magnetic resonance imaging, including <i>T</i> <sub>1</sub>-weighted and diffusion tensor imaging. We calculated polygenic risk scores (PRS) based on previous summary statistics from a genome-wide association study of the Chinese Han population. We used a novel method based on Kullback-Leibler divergence to construct the morphometric inverse divergence (MIND) network, and we included the classic morphometric similarity network (MSN) as a complementary approach. Considering the relationship between cortical and white matter networks, we also constructed a streamlined density network. We conducted group comparison and PRS correlation analyses at both the regional and network level.</p><p><strong>Results: </strong>We included 130 healthy controls and 195 patients with MDD. The results indicated enhanced connectivity in the MIND network among patients with MDD and people with high genetic risk, particularly in the somatomotor (SMN) and default mode networks (DMN). We did not observe significant findings in the MSN. The white matter network showed disruption among people with high genetic risk, also primarily in the SMN and DMN. The MIND network outperformed the MSN network in distinguishing MDD status.</p><p><strong>Limitations: </strong>Our study was cross-sectional and could not explore the causal relationships between cortical morphological changes, white matter connectivity, and disease states. Some patients had received antidepressant treatment, which may have influenced brain morphology and white matter network structure.</p><p><strong>Conclusion: </strong>The genetic mechanisms of depression may be related to white matter disintegration, which could also be associated with decoupling of the SMN and DMN. These findings provide new insights into the genetic mechanisms and potential biomarkers of MDD.</p>","PeriodicalId":50073,"journal":{"name":"Journal of Psychiatry & Neuroscience","volume":"50 1","pages":"E21-E30"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Psychiatry & Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1503/jpn.240140","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"Print","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cortical morphometry is an intermediate phenotype that is closely related to the genetics and onset of major depressive disorder (MDD), and cortical morphometric networks are considered more relevant to disease mechanisms than brain regions. We sought to investigate changes in cortical morphometric networks in MDD and their relationship with genetic risk in healthy controls.
Methods: We recruited healthy controls and patients with MDD of Han Chinese descent. Participants underwent DNA extraction and magnetic resonance imaging, including T1-weighted and diffusion tensor imaging. We calculated polygenic risk scores (PRS) based on previous summary statistics from a genome-wide association study of the Chinese Han population. We used a novel method based on Kullback-Leibler divergence to construct the morphometric inverse divergence (MIND) network, and we included the classic morphometric similarity network (MSN) as a complementary approach. Considering the relationship between cortical and white matter networks, we also constructed a streamlined density network. We conducted group comparison and PRS correlation analyses at both the regional and network level.
Results: We included 130 healthy controls and 195 patients with MDD. The results indicated enhanced connectivity in the MIND network among patients with MDD and people with high genetic risk, particularly in the somatomotor (SMN) and default mode networks (DMN). We did not observe significant findings in the MSN. The white matter network showed disruption among people with high genetic risk, also primarily in the SMN and DMN. The MIND network outperformed the MSN network in distinguishing MDD status.
Limitations: Our study was cross-sectional and could not explore the causal relationships between cortical morphological changes, white matter connectivity, and disease states. Some patients had received antidepressant treatment, which may have influenced brain morphology and white matter network structure.
Conclusion: The genetic mechanisms of depression may be related to white matter disintegration, which could also be associated with decoupling of the SMN and DMN. These findings provide new insights into the genetic mechanisms and potential biomarkers of MDD.
期刊介绍:
The Journal of Psychiatry & Neuroscience publishes papers at the intersection of psychiatry and neuroscience that advance our understanding of the neural mechanisms involved in the etiology and treatment of psychiatric disorders. This includes studies on patients with psychiatric disorders, healthy humans, and experimental animals as well as studies in vitro. Original research articles, including clinical trials with a mechanistic component, and review papers will be considered.