In-depth Analysis of Lime-Hemp Concrete and Water Vapor Interactions: Effect of water default and prediction of the sorption behavior

Brahim Mazian, Giana Almeida, Nils Frantz, Patrick Perré
{"title":"In-depth Analysis of Lime-Hemp Concrete and Water Vapor Interactions: Effect of water default and prediction of the sorption behavior","authors":"Brahim Mazian, Giana Almeida, Nils Frantz, Patrick Perré","doi":"10.1016/j.cemconcomp.2025.105921","DOIUrl":null,"url":null,"abstract":"Lime-hemp concrete (LHC) emerges as a sustainable building material due to its low embodied energy, carbon storage capabilities, and interesting properties for both winter and summer comfort. However, a comprehensive understanding of its moisture behavior is pivotal for its development and application in construction. This study investigates the moisture sorption behavior and isotherm characteristics of LHC across four formulations varying in density (321–478 kg/m³) and binder/particle weight ratios (BP = 1 and 2). Using a strict equilibrium criterion, over 3000 hours of Dynamic Vapor Sorption (DVS), experiments revealed some formulations failed to reach equilibrium during adsorption at RH levels above 60%, indicating irreversible processes characterized by offsets in equilibrium moisture content (EMC) at 0% RH after a complete cycle. These phenomena were attributed to insufficient water availability during mixing and/or excessive compaction. Formulations with a higher weight ratio (B/P=2) and significant compaction, such as BP2_420, exhibited the highest desorption offset (7.5% EMC), while those with a lower B/P weight ratio (B/P=1), such as BP1_379, showed reduced offsets below 2%, due to better water distribution. The study also showed that reversible sorption behavior, corrected for offsets, could be accurately described using the Guggenheim-Anderson-de Boer (GAB) model. Finally, the rule of mixtures reliably predicted sorption isotherms by combining the GAB parameters of hemp shive particles and binders, with deviations limited to a maximum error of 2.3%.","PeriodicalId":519419,"journal":{"name":"Cement and Concrete Composites","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cemconcomp.2025.105921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lime-hemp concrete (LHC) emerges as a sustainable building material due to its low embodied energy, carbon storage capabilities, and interesting properties for both winter and summer comfort. However, a comprehensive understanding of its moisture behavior is pivotal for its development and application in construction. This study investigates the moisture sorption behavior and isotherm characteristics of LHC across four formulations varying in density (321–478 kg/m³) and binder/particle weight ratios (BP = 1 and 2). Using a strict equilibrium criterion, over 3000 hours of Dynamic Vapor Sorption (DVS), experiments revealed some formulations failed to reach equilibrium during adsorption at RH levels above 60%, indicating irreversible processes characterized by offsets in equilibrium moisture content (EMC) at 0% RH after a complete cycle. These phenomena were attributed to insufficient water availability during mixing and/or excessive compaction. Formulations with a higher weight ratio (B/P=2) and significant compaction, such as BP2_420, exhibited the highest desorption offset (7.5% EMC), while those with a lower B/P weight ratio (B/P=1), such as BP1_379, showed reduced offsets below 2%, due to better water distribution. The study also showed that reversible sorption behavior, corrected for offsets, could be accurately described using the Guggenheim-Anderson-de Boer (GAB) model. Finally, the rule of mixtures reliably predicted sorption isotherms by combining the GAB parameters of hemp shive particles and binders, with deviations limited to a maximum error of 2.3%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights into the synergistic action of initial hydration and subsequent carbonation of Portland cement Porous biochar for improving the CO2 uptake capacities and kinetics of concrete Microstructure transformation of MCM-41 modified cement paste subjected to thermal load and modelling of its pore size distribution New insights into the interaction between seawater and CO2-activated calcium silicate composites Mechanical Performance Enhancement of UHPC Via ITZ Improvement Using Graphene Oxide-Coated Steel Fibers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1