Andrew H. Proppe, Kin Long Kelvin Lee, Weiwei Sun, Chantalle J. Krajewska, Oliver Tye, Moungi G. Bawendi
{"title":"Neural Ordinary Differential Equations for Forecasting and Accelerating Photon Correlation Spectroscopy","authors":"Andrew H. Proppe, Kin Long Kelvin Lee, Weiwei Sun, Chantalle J. Krajewska, Oliver Tye, Moungi G. Bawendi","doi":"10.1021/acs.jpclett.4c03234","DOIUrl":null,"url":null,"abstract":"Evaluating the quantum optical properties of solid-state single-photon emitters is a time-consuming task that typically requires interferometric photon correlation experiments. Photon correlation Fourier spectroscopy (PCFS) is one such technique that measures time-resolved single-emitter line shapes and offers additional spectral information over Hong–Ou–Mandel two-photon interference but requires long experimental acquisition times. Here, we demonstrate a neural ordinary differential equation model, g2NODE, that can forecast a complete and noise-free interferometry experiment from a small subset of noisy correlation functions. We demonstrate this for simulated and experimental data, where g2NODE utilizes 10–20 noisy measured photon correlation functions to create entire denoised interferograms of up to 200 stage positions, enabling up to a 20-fold speedup in experimental acquisition time from hours to minutes. Our work presents a new deep learning approach to greatly accelerate the use of photon correlation spectroscopy as an experimental characterization tool for novel quantum emitter materials.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"9 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03234","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Evaluating the quantum optical properties of solid-state single-photon emitters is a time-consuming task that typically requires interferometric photon correlation experiments. Photon correlation Fourier spectroscopy (PCFS) is one such technique that measures time-resolved single-emitter line shapes and offers additional spectral information over Hong–Ou–Mandel two-photon interference but requires long experimental acquisition times. Here, we demonstrate a neural ordinary differential equation model, g2NODE, that can forecast a complete and noise-free interferometry experiment from a small subset of noisy correlation functions. We demonstrate this for simulated and experimental data, where g2NODE utilizes 10–20 noisy measured photon correlation functions to create entire denoised interferograms of up to 200 stage positions, enabling up to a 20-fold speedup in experimental acquisition time from hours to minutes. Our work presents a new deep learning approach to greatly accelerate the use of photon correlation spectroscopy as an experimental characterization tool for novel quantum emitter materials.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.