Terahertz Saturable Absorption across Charge Separation in Photoexcited Monolayer Graphene/MoS2 Heterostructure

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2025-01-06 DOI:10.1021/acs.jpclett.4c03138
Qi Xi, Jin Yang, Jiafeng Xie, Xinyao Wang, Feihong Xu, Qi Li, Kai Zhang, Tianwu Wang, Fuhai Su
{"title":"Terahertz Saturable Absorption across Charge Separation in Photoexcited Monolayer Graphene/MoS2 Heterostructure","authors":"Qi Xi, Jin Yang, Jiafeng Xie, Xinyao Wang, Feihong Xu, Qi Li, Kai Zhang, Tianwu Wang, Fuhai Su","doi":"10.1021/acs.jpclett.4c03138","DOIUrl":null,"url":null,"abstract":"Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS<sub>2</sub> heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS<sub>2</sub>. When probed with intense THz pulses exceeding 34 kV/cm in a peak electric field, significant THz saturable absorption is observed over a period of 20 ps. Furthermore, the photoinduced change in the transmitted THz waveform, linked to the THz-driven nonlinear current, manifests as a substantial self-phase modulation. These nonlinear responses can be attributed to the competition between rapid carrier heating and slow carrier cooling via electron–electron and electron–phonon scattering in the charge-transfer-induced hole system of the graphene layer. This work demonstrates an integration of advantages arising from robust nonlinear absorption in graphene and enhanced photocarrier harvesting in transition metal dichalcogenides by exploiting heterostructure construction.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03138","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS2 heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS2. When probed with intense THz pulses exceeding 34 kV/cm in a peak electric field, significant THz saturable absorption is observed over a period of 20 ps. Furthermore, the photoinduced change in the transmitted THz waveform, linked to the THz-driven nonlinear current, manifests as a substantial self-phase modulation. These nonlinear responses can be attributed to the competition between rapid carrier heating and slow carrier cooling via electron–electron and electron–phonon scattering in the charge-transfer-induced hole system of the graphene layer. This work demonstrates an integration of advantages arising from robust nonlinear absorption in graphene and enhanced photocarrier harvesting in transition metal dichalcogenides by exploiting heterostructure construction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Determining Minimum Energy Conical Intersections by Enveloping the Seam: Exploring Ground and Excited State Intersections in Coupled Cluster Theory Reduced Thermal Conductivity and Improved Stability by B-Site Doping in Tin Halide Perovskites Neural Ordinary Differential Equations for Forecasting and Accelerating Photon Correlation Spectroscopy Precise Control of Efficient Phosphorescence in Host–Guest Doping Systems via Dynamic Metal–Ligand Coordination Terahertz Saturable Absorption across Charge Separation in Photoexcited Monolayer Graphene/MoS2 Heterostructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1