B. Davies, S. Barandun, E. O. Hiltunen, R. V. Craster, H. Ammari
{"title":"Two-scale effective model for defect-induced localization transitions in non-Hermitian systems","authors":"B. Davies, S. Barandun, E. O. Hiltunen, R. V. Craster, H. Ammari","doi":"10.1103/physrevb.111.035109","DOIUrl":null,"url":null,"abstract":"We illuminate the fundamental mechanism responsible for the transition between the non-Hermitian skin effect and defect-induced localization in the bulk. We study a Hamiltonian with nonreciprocal couplings that exhibits the skin effect (the localization of all eigenvectors at one edge) and add an on-site defect in the center. Using a two-scale asymptotic method, we characterize the long-scale growth and decay of the eigenvectors and derive a simple and intuitive effective model for the transition that occurs when the defect is sufficiently large that one of the modes is localized at the defect site, rather than at the edge of the system. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"27 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.035109","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We illuminate the fundamental mechanism responsible for the transition between the non-Hermitian skin effect and defect-induced localization in the bulk. We study a Hamiltonian with nonreciprocal couplings that exhibits the skin effect (the localization of all eigenvectors at one edge) and add an on-site defect in the center. Using a two-scale asymptotic method, we characterize the long-scale growth and decay of the eigenvectors and derive a simple and intuitive effective model for the transition that occurs when the defect is sufficiently large that one of the modes is localized at the defect site, rather than at the edge of the system. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter