{"title":"Obfuscation-resilient detection of Android third-party libraries using multi-scale code dependency fusion","authors":"Zhao Zhang, Senlin Luo, Yongxin Lu, Limin Pan","doi":"10.1016/j.inffus.2024.102908","DOIUrl":null,"url":null,"abstract":"Third-Party Library (TPL) detection is a crucial aspect of Android application security assessment, but it faces significant challenges due to code obfuscation. Existing methods often rely on single-scale features, such as class dependencies or instruction opcodes. This reliance can overlook critical dependencies, leading to incomplete library representation and reduced detection recall. Furthermore, the high similarity between a TPL and its adjacent versions causes overlaps in the feature space, reducing the accuracy of version identification. To address these limitations, we propose LibMD, a multi-scale code dependency fusion approach for TPL detection in Android apps. LibMD enhances library code representation by combining class reference syntax augmentation, cross-scale function mapping, and control flow reconstruction of basic blocks. It also extracts metadata dependencies and constructs a library dependency graph that integrates app-code similarity with multiple libraries. By applying Bayes’ theorem to compute posterior probabilities, LibMD effectively evaluates the likelihood of TPL integration and improves the precision of library version identification. Experimental results demonstrate that LibMD outperforms state-of-the-art methods across diverse datasets, achieving robust TPL detection and accurate version identification, even under various obfuscation techniques.","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"73 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.inffus.2024.102908","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Third-Party Library (TPL) detection is a crucial aspect of Android application security assessment, but it faces significant challenges due to code obfuscation. Existing methods often rely on single-scale features, such as class dependencies or instruction opcodes. This reliance can overlook critical dependencies, leading to incomplete library representation and reduced detection recall. Furthermore, the high similarity between a TPL and its adjacent versions causes overlaps in the feature space, reducing the accuracy of version identification. To address these limitations, we propose LibMD, a multi-scale code dependency fusion approach for TPL detection in Android apps. LibMD enhances library code representation by combining class reference syntax augmentation, cross-scale function mapping, and control flow reconstruction of basic blocks. It also extracts metadata dependencies and constructs a library dependency graph that integrates app-code similarity with multiple libraries. By applying Bayes’ theorem to compute posterior probabilities, LibMD effectively evaluates the likelihood of TPL integration and improves the precision of library version identification. Experimental results demonstrate that LibMD outperforms state-of-the-art methods across diverse datasets, achieving robust TPL detection and accurate version identification, even under various obfuscation techniques.
期刊介绍:
Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.