Tree Lifespans in a Warming World: Unravelling the Universal Trade-Off Between Growth and Lifespan in Temperate Forests

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Global Change Biology Pub Date : 2025-01-06 DOI:10.1111/gcb.70023
Shuhui Liu, Roel J. W. Brienen, Chunyu Fan, Minhui Hao, Xiuhai Zhao, Chunyu Zhang
{"title":"Tree Lifespans in a Warming World: Unravelling the Universal Trade-Off Between Growth and Lifespan in Temperate Forests","authors":"Shuhui Liu, Roel J. W. Brienen, Chunyu Fan, Minhui Hao, Xiuhai Zhao, Chunyu Zhang","doi":"10.1111/gcb.70023","DOIUrl":null,"url":null,"abstract":"Tree growth and lifespan are key determinants of forest dynamics, and ultimately control carbon stocks. Warming and increasing CO<sub>2</sub> have been observed to increase growth but such increases may not result in large net biomass gains due to trade-offs between growth and lifespan. A deeper understanding of the nature of the trade-off and its potential spatial variation is crucial to improve predictions of the future carbon sink. This study aims to identify key drivers of growth and lifespan, assess the universality of tree growth-lifespan trade-offs, explore the possible latitudinal patterns of trade-off strengths and their determinants, and project growth and lifespan under future climate scenarios. We analyzed 21,193 trees of 69 species (48 included in further analysis) at 445 sites (417 included in further analysis) in temperate forests in northeastern China to estimate early growth rate and tree lifespan. We find that temperature and human pressure enhance tree growth and reduce lifespan, while altitude increases lifespan. We further find evidence for growth-lifespan trade-offs at all studied levels, that is, among trees, among species and communities, and within species and communities. Trade-offs are stronger at colder, higher latitudes compared to warmer sites, because of larger variation in tree growth and climate, larger range sizes for individual species, and lower species' diversity for communities at high latitudes. We predict future increases in growth and reductions in tree lifespan in response to climate change for the 2050s. Taking growth lifespan trade-offs into account resulted in even larger predictions of decreases in tree lifespan of up to 8%. In conclusion, growth-lifespan trade-offs are universal, but the strengths may vary by environment and between different forests. Its effects are important to include in predictions of forest responses to global change and need to be considered more widely.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"27 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/gcb.70023","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Tree growth and lifespan are key determinants of forest dynamics, and ultimately control carbon stocks. Warming and increasing CO2 have been observed to increase growth but such increases may not result in large net biomass gains due to trade-offs between growth and lifespan. A deeper understanding of the nature of the trade-off and its potential spatial variation is crucial to improve predictions of the future carbon sink. This study aims to identify key drivers of growth and lifespan, assess the universality of tree growth-lifespan trade-offs, explore the possible latitudinal patterns of trade-off strengths and their determinants, and project growth and lifespan under future climate scenarios. We analyzed 21,193 trees of 69 species (48 included in further analysis) at 445 sites (417 included in further analysis) in temperate forests in northeastern China to estimate early growth rate and tree lifespan. We find that temperature and human pressure enhance tree growth and reduce lifespan, while altitude increases lifespan. We further find evidence for growth-lifespan trade-offs at all studied levels, that is, among trees, among species and communities, and within species and communities. Trade-offs are stronger at colder, higher latitudes compared to warmer sites, because of larger variation in tree growth and climate, larger range sizes for individual species, and lower species' diversity for communities at high latitudes. We predict future increases in growth and reductions in tree lifespan in response to climate change for the 2050s. Taking growth lifespan trade-offs into account resulted in even larger predictions of decreases in tree lifespan of up to 8%. In conclusion, growth-lifespan trade-offs are universal, but the strengths may vary by environment and between different forests. Its effects are important to include in predictions of forest responses to global change and need to be considered more widely.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
期刊最新文献
Increased Mineral-Associated Organic Carbon and Persistent Molecules in Allochthonous Blue Carbon Ecosystems Predicting Climate Mitigation Through Carbon Burial in Blue Carbon Ecosystems—Challenges and Pitfalls Patterns and Driving Factors of Litter Decomposition Rates in Global Dryland Ecosystems Climate Change Influences via Species Distribution Shifts and Century‐Scale Warming in an End‐To‐End California Current Ecosystem Model Tree Lifespans in a Warming World: Unravelling the Universal Trade-Off Between Growth and Lifespan in Temperate Forests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1