Dissecting the disk and the jet of a massive (proto)star

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astronomy & Astrophysics Pub Date : 2025-01-03 DOI:10.1051/0004-6361/202452686
R. Cesaroni, D. Galli, M. Padovani, V. M. Rivilla, Á. Sánchez-Monge
{"title":"Dissecting the disk and the jet of a massive (proto)star","authors":"R. Cesaroni, D. Galli, M. Padovani, V. M. Rivilla, Á. Sánchez-Monge","doi":"10.1051/0004-6361/202452686","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> The study of disks around early-type (proto)stars has recently been boosted by a new generation of instruments, and additional evidence has been found of disk+jet systems around stars of up to ~20 <i>M<i/><sub>⊙<sub/>. These results appear to confirm theoretical predictions that even the most massive stars may form though disk-mediated accretion.<i>Aims.<i/> We want to investigate one of the best examples of disk+jet systems around an early B-type (proto)star, IRAS 20126+4104. The relatively simple structure of this object and its relative proximity to Earth (1.64 kpc) make it an ideal target for resolution of its disk and the determination of its physical and kinematical structure.<i>Methods.<i/> Despite the high declination of IRAS 20126+4104, it has been possible to perform successful observations with the Atacama Large Millimeter and submillimeter Array at 1.4 mm in the continuum emission and a number of molecular tracers of high-density gas (for the disk) and shocked gas (for the jet).<i>Results.<i/> The new data allow us to improve on previous similar observations of IRAS 20126+4104 and confirm the existence of a Keplerian accretion disk around a ~12 <i>M<i/><sub>⊙<sub/> (proto)star. From methyl cyanide, we derived the rotation temperature and column density as a function of disk radius. We also obtained a map of the same quantities for the jet using the ratio between two lines of formaldehyde. We also use two simple models of the jet and the disk to estimate the basic geometrical and kinematical parameters of the two. From the temperature and column density profiles, we conclude that the disk is stable at all radii. We also estimate an accretion rate of ~10<sup>−3<sup/> <i>M<i/><sub>⊙<sub/> yr<sup>−1<sup/>.<i>Conclusions.<i/> Our analysis confirms that the jet from IRAS 20126+4104 is highly collimated, lies close to the plane of the sky, and expands with velocity increasing with distance. As expected, the gas temperature and column density peak in the bow shock. The disk is undergoing Keplerian rotation but a non-negligible radial velocity component is also present that is equal to ~40% of the rotational component. The disk is slightly inclined with respect to the line of sight and has a dusty envelope that absorbs the emission from the disk surface. This causes a slight distortion of the disk structure observed in high-density tracers such as methyl cyanide. We also reveal a significant deviation from axial symmetry in the SW part of the disk, which might be caused by either tidal interaction with a nearby, lower-mass companion or interaction with the outflowing gas of the jet.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"5 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452686","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. The study of disks around early-type (proto)stars has recently been boosted by a new generation of instruments, and additional evidence has been found of disk+jet systems around stars of up to ~20 M. These results appear to confirm theoretical predictions that even the most massive stars may form though disk-mediated accretion.Aims. We want to investigate one of the best examples of disk+jet systems around an early B-type (proto)star, IRAS 20126+4104. The relatively simple structure of this object and its relative proximity to Earth (1.64 kpc) make it an ideal target for resolution of its disk and the determination of its physical and kinematical structure.Methods. Despite the high declination of IRAS 20126+4104, it has been possible to perform successful observations with the Atacama Large Millimeter and submillimeter Array at 1.4 mm in the continuum emission and a number of molecular tracers of high-density gas (for the disk) and shocked gas (for the jet).Results. The new data allow us to improve on previous similar observations of IRAS 20126+4104 and confirm the existence of a Keplerian accretion disk around a ~12 M (proto)star. From methyl cyanide, we derived the rotation temperature and column density as a function of disk radius. We also obtained a map of the same quantities for the jet using the ratio between two lines of formaldehyde. We also use two simple models of the jet and the disk to estimate the basic geometrical and kinematical parameters of the two. From the temperature and column density profiles, we conclude that the disk is stable at all radii. We also estimate an accretion rate of ~10−3 M yr−1.Conclusions. Our analysis confirms that the jet from IRAS 20126+4104 is highly collimated, lies close to the plane of the sky, and expands with velocity increasing with distance. As expected, the gas temperature and column density peak in the bow shock. The disk is undergoing Keplerian rotation but a non-negligible radial velocity component is also present that is equal to ~40% of the rotational component. The disk is slightly inclined with respect to the line of sight and has a dusty envelope that absorbs the emission from the disk surface. This causes a slight distortion of the disk structure observed in high-density tracers such as methyl cyanide. We also reveal a significant deviation from axial symmetry in the SW part of the disk, which might be caused by either tidal interaction with a nearby, lower-mass companion or interaction with the outflowing gas of the jet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
期刊最新文献
MAGIS (Measuring Abundances of red super Giants with Infrared Spectroscopy) project Discovery of a cold giant planet and mass measurement of a hot super-Earth in the multi-planetary system WASP-132 Physical properties of newly active asteroid 2010 LH15 Inelastic H + H3+ collision rates and their impact on the determination of the excitation temperature of H3+ Asteroid detection polar equation calculation and graphical representation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1