Bitao Dong, Mingyang Wei, Yuheng Li, Yingguo Yang, Wei Ma, Yueshuai Zhang, Yanbiao Ran, Meijie Cui, Ziru Su, Qunping Fan, Zhaozhao Bi, Tomas Edvinsson, Zhiqin Ding, Huanxin Ju, Shuai You, Shaik Mohammed Zakeeruddin, Xiong Li, Anders Hagfeldt, Michael Grätzel, Yuhang Liu
{"title":"Self-assembled bilayer for perovskite solar cells with improved tolerance against thermal stresses","authors":"Bitao Dong, Mingyang Wei, Yuheng Li, Yingguo Yang, Wei Ma, Yueshuai Zhang, Yanbiao Ran, Meijie Cui, Ziru Su, Qunping Fan, Zhaozhao Bi, Tomas Edvinsson, Zhiqin Ding, Huanxin Ju, Shuai You, Shaik Mohammed Zakeeruddin, Xiong Li, Anders Hagfeldt, Michael Grätzel, Yuhang Liu","doi":"10.1038/s41560-024-01689-2","DOIUrl":null,"url":null,"abstract":"<p>The adoption of perovskite solar cells (PSCs) requires improved resistance to high temperatures and temperature variations. Hole-selective self-assembled monolayers (SAMs) have enabled progress in the performance of inverted PSCs, yet they may compromise temperature stability owing to desorption and weak interfacial contact. Here we developed a self-assembled bilayer by covalently interconnecting a phosphonic acid SAM with a triphenylamine upper layer. This polymerized network, formed through Friedel–Crafts alkylation, resisted thermal degradation up to 100 °C for 200 h. Meanwhile, the face-on-oriented upper layer exhibited adhesive contact with perovskites, leading to a 1.7-fold improvement in adhesion energy compared with the SAM–perovskite interface. We reported power conversion efficiencies exceeding 26% for inverted PSCs. The champion devices demonstrated less than 4% and 3% efficiency loss after 2,000 h damp heat exposure (85 °C and 85% relative humidity) and over 1,200 thermal cycles between −40 °C and 85 °C, respectively, meeting the temperature stability criteria outlined in the International Electrotechnical Commission 61215:2021 standards.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"48 1","pages":""},"PeriodicalIF":49.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-024-01689-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The adoption of perovskite solar cells (PSCs) requires improved resistance to high temperatures and temperature variations. Hole-selective self-assembled monolayers (SAMs) have enabled progress in the performance of inverted PSCs, yet they may compromise temperature stability owing to desorption and weak interfacial contact. Here we developed a self-assembled bilayer by covalently interconnecting a phosphonic acid SAM with a triphenylamine upper layer. This polymerized network, formed through Friedel–Crafts alkylation, resisted thermal degradation up to 100 °C for 200 h. Meanwhile, the face-on-oriented upper layer exhibited adhesive contact with perovskites, leading to a 1.7-fold improvement in adhesion energy compared with the SAM–perovskite interface. We reported power conversion efficiencies exceeding 26% for inverted PSCs. The champion devices demonstrated less than 4% and 3% efficiency loss after 2,000 h damp heat exposure (85 °C and 85% relative humidity) and over 1,200 thermal cycles between −40 °C and 85 °C, respectively, meeting the temperature stability criteria outlined in the International Electrotechnical Commission 61215:2021 standards.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.