Prediction of checkpoint inhibitor immunotherapy efficacy for cancer using routine blood tests and clinical data

IF 58.7 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nature Medicine Pub Date : 2025-01-06 DOI:10.1038/s41591-024-03398-5
Seong-Keun Yoo, Conall W. Fitzgerald, Byuri Angela Cho, Bailey G. Fitzgerald, Catherine Han, Elizabeth S. Koh, Abhinav Pandey, Hannah Sfreddo, Fionnuala Crowley, Michelle Rudshteyn Korostin, Neha Debnath, Yan Leyfman, Cristina Valero, Mark Lee, Joris L. Vos, Andrew Sangho Lee, Karena Zhao, Stanley Lam, Ezekiel Olumuyide, Fengshen Kuo, Eric A. Wilson, Pauline Hamon, Clotilde Hennequin, Miriam Saffern, Lynda Vuong, A. Ari Hakimi, Brian Brown, Miriam Merad, Sacha Gnjatic, Nina Bhardwaj, Matthew D. Galsky, Eric E. Schadt, Robert M. Samstein, Thomas U. Marron, Mithat Gönen, Luc G. T. Morris, Diego Chowell
{"title":"Prediction of checkpoint inhibitor immunotherapy efficacy for cancer using routine blood tests and clinical data","authors":"Seong-Keun Yoo, Conall W. Fitzgerald, Byuri Angela Cho, Bailey G. Fitzgerald, Catherine Han, Elizabeth S. Koh, Abhinav Pandey, Hannah Sfreddo, Fionnuala Crowley, Michelle Rudshteyn Korostin, Neha Debnath, Yan Leyfman, Cristina Valero, Mark Lee, Joris L. Vos, Andrew Sangho Lee, Karena Zhao, Stanley Lam, Ezekiel Olumuyide, Fengshen Kuo, Eric A. Wilson, Pauline Hamon, Clotilde Hennequin, Miriam Saffern, Lynda Vuong, A. Ari Hakimi, Brian Brown, Miriam Merad, Sacha Gnjatic, Nina Bhardwaj, Matthew D. Galsky, Eric E. Schadt, Robert M. Samstein, Thomas U. Marron, Mithat Gönen, Luc G. T. Morris, Diego Chowell","doi":"10.1038/s41591-024-03398-5","DOIUrl":null,"url":null,"abstract":"<p>Predicting whether a patient with cancer will benefit from immune checkpoint inhibitors (ICIs) without resorting to advanced genomic or immunologic assays is an important clinical need. To address this, we developed and evaluated SCORPIO, a machine learning system that utilizes routine blood tests (complete blood count and comprehensive metabolic profile) alongside clinical characteristics from 9,745 ICI-treated patients across 21 cancer types. SCORPIO was trained on data from 1,628 patients across 17 cancer types from Memorial Sloan Kettering Cancer Center. In two internal test sets comprising 2,511 patients across 19 cancer types, SCORPIO achieved median time-dependent area under the receiver operating characteristic curve (AUC(t)) values of 0.763 and 0.759 for predicting overall survival at 6, 12, 18, 24 and 30 months, outperforming tumor mutational burden (TMB), which showed median AUC(t) values of 0.503 and 0.543. Additionally, SCORPIO demonstrated superior predictive performance for predicting clinical benefit (tumor response or prolonged stability), with AUC values of 0.714 and 0.641, compared to TMB (AUC = 0.546 and 0.573). External validation was performed using 10 global phase 3 trials (4,447 patients across 6 cancer types) and a real-world cohort from the Mount Sinai Health System (1,159 patients across 18 cancer types). In these external cohorts, SCORPIO maintained robust performance in predicting ICI outcomes, surpassing programmed death-ligand 1 immunostaining. These findings underscore SCORPIO’s reliability and adaptability, highlighting its potential to predict patient outcomes with ICI therapy across diverse cancer types and healthcare settings.</p>","PeriodicalId":19037,"journal":{"name":"Nature Medicine","volume":"42 1","pages":""},"PeriodicalIF":58.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41591-024-03398-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting whether a patient with cancer will benefit from immune checkpoint inhibitors (ICIs) without resorting to advanced genomic or immunologic assays is an important clinical need. To address this, we developed and evaluated SCORPIO, a machine learning system that utilizes routine blood tests (complete blood count and comprehensive metabolic profile) alongside clinical characteristics from 9,745 ICI-treated patients across 21 cancer types. SCORPIO was trained on data from 1,628 patients across 17 cancer types from Memorial Sloan Kettering Cancer Center. In two internal test sets comprising 2,511 patients across 19 cancer types, SCORPIO achieved median time-dependent area under the receiver operating characteristic curve (AUC(t)) values of 0.763 and 0.759 for predicting overall survival at 6, 12, 18, 24 and 30 months, outperforming tumor mutational burden (TMB), which showed median AUC(t) values of 0.503 and 0.543. Additionally, SCORPIO demonstrated superior predictive performance for predicting clinical benefit (tumor response or prolonged stability), with AUC values of 0.714 and 0.641, compared to TMB (AUC = 0.546 and 0.573). External validation was performed using 10 global phase 3 trials (4,447 patients across 6 cancer types) and a real-world cohort from the Mount Sinai Health System (1,159 patients across 18 cancer types). In these external cohorts, SCORPIO maintained robust performance in predicting ICI outcomes, surpassing programmed death-ligand 1 immunostaining. These findings underscore SCORPIO’s reliability and adaptability, highlighting its potential to predict patient outcomes with ICI therapy across diverse cancer types and healthcare settings.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用常规血液检查和临床数据预测检查点抑制剂免疫治疗对癌症的疗效
预测癌症患者是否会从免疫检查点抑制剂(ICIs)中获益,而无需诉诸先进的基因组或免疫学分析是一项重要的临床需求。为了解决这个问题,我们开发并评估了SCORPIO,这是一个机器学习系统,利用常规血液检查(全血细胞计数和综合代谢谱)以及来自21种癌症类型的9,745名ci治疗患者的临床特征。SCORPIO的训练数据来自纪念斯隆-凯特琳癌症中心17种癌症类型的1628名患者。在包含19种癌症类型的2,511例患者的两个内部测试集中,SCORPIO在预测6、12、18、24和30个月的总生存时,在受试者工作特征曲线下的中位时间依赖面积(AUC(t))值为0.763和0.759,优于肿瘤突变负荷(TMB),其中位AUC(t)值为0.503和0.543。此外,与TMB (AUC = 0.546和0.573)相比,SCORPIO在预测临床获益(肿瘤反应或长期稳定性)方面表现出优越的预测性能,AUC值分别为0.714和0.641。外部验证使用10项全球3期试验(6种癌症类型的4447名患者)和来自西奈山卫生系统的真实队列(18种癌症类型的1159名患者)进行。在这些外部队列中,SCORPIO在预测ICI结果方面保持了强劲的表现,超过了程序性死亡配体1免疫染色。这些发现强调了SCORPIO的可靠性和适应性,强调了其在不同癌症类型和医疗环境下预测ICI治疗患者预后的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Medicine
Nature Medicine 医学-生化与分子生物学
CiteScore
100.90
自引率
0.70%
发文量
525
审稿时长
1 months
期刊介绍: Nature Medicine is a monthly journal publishing original peer-reviewed research in all areas of medicine. The publication focuses on originality, timeliness, interdisciplinary interest, and the impact on improving human health. In addition to research articles, Nature Medicine also publishes commissioned content such as News, Reviews, and Perspectives. This content aims to provide context for the latest advances in translational and clinical research, reaching a wide audience of M.D. and Ph.D. readers. All editorial decisions for the journal are made by a team of full-time professional editors. Nature Medicine consider all types of clinical research, including: -Case-reports and small case series -Clinical trials, whether phase 1, 2, 3 or 4 -Observational studies -Meta-analyses -Biomarker studies -Public and global health studies Nature Medicine is also committed to facilitating communication between translational and clinical researchers. As such, we consider “hybrid” studies with preclinical and translational findings reported alongside data from clinical studies.
期刊最新文献
A roadmap for engagement and inclusion of LGBTQIA+ people in clinical research Author Correction: Burdens of type 2 diabetes and cardiovascular disease attributable to sugar-sweetened beverages in 184 countries Intermittent fasting is good for losing (some) weight Population-based, first-tier genomic newborn screening in the maternity ward The Marburg virus outbreak is a critical moment for Rwanda’s one health policy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1