Zhiqi Chen, Yunfeng Chao, Yeqing Xu, Hanwen Liu, Gordon G Wallace, Jie Ding, Caiyun Wang
{"title":"A Highly Impact-Tolerant Textile-Based Lithium-Ion Battery.","authors":"Zhiqi Chen, Yunfeng Chao, Yeqing Xu, Hanwen Liu, Gordon G Wallace, Jie Ding, Caiyun Wang","doi":"10.1021/acsami.4c16109","DOIUrl":null,"url":null,"abstract":"<p><p>Textile-based lithium-ion batteries (LIBs) are in great demand to power wearable electronics. They currently face a key safety challenge, particularly concerning mechanical abuse that could trigger thermal runaway, causing harm to individuals. Here, we report on Kevlar-fabric-based LIBs that can afford high impact tolerance while offering excellent electrochemical performance comparable to metal-foil-based cells. The integration of Kevlar electrodes, known for their protective nature, with impact-tolerant shear thickening electrolytes (STEs) effectively dissipates the impact energy. It can be ascribed to the shear thickening effect and the induced yarn-to-yarn friction within Kevlar fabrics. This design mirrors the configuration of liquid body armor that consists of shear thickening fluid and Kevlar fabric. This work provides an alternative approach for developing highly impact-tolerant LIBs.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c16109","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Textile-based lithium-ion batteries (LIBs) are in great demand to power wearable electronics. They currently face a key safety challenge, particularly concerning mechanical abuse that could trigger thermal runaway, causing harm to individuals. Here, we report on Kevlar-fabric-based LIBs that can afford high impact tolerance while offering excellent electrochemical performance comparable to metal-foil-based cells. The integration of Kevlar electrodes, known for their protective nature, with impact-tolerant shear thickening electrolytes (STEs) effectively dissipates the impact energy. It can be ascribed to the shear thickening effect and the induced yarn-to-yarn friction within Kevlar fabrics. This design mirrors the configuration of liquid body armor that consists of shear thickening fluid and Kevlar fabric. This work provides an alternative approach for developing highly impact-tolerant LIBs.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.