A Highly Impact-Tolerant Textile-Based Lithium-Ion Battery.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2025-01-06 DOI:10.1021/acsami.4c16109
Zhiqi Chen, Yunfeng Chao, Yeqing Xu, Hanwen Liu, Gordon G Wallace, Jie Ding, Caiyun Wang
{"title":"A Highly Impact-Tolerant Textile-Based Lithium-Ion Battery.","authors":"Zhiqi Chen, Yunfeng Chao, Yeqing Xu, Hanwen Liu, Gordon G Wallace, Jie Ding, Caiyun Wang","doi":"10.1021/acsami.4c16109","DOIUrl":null,"url":null,"abstract":"<p><p>Textile-based lithium-ion batteries (LIBs) are in great demand to power wearable electronics. They currently face a key safety challenge, particularly concerning mechanical abuse that could trigger thermal runaway, causing harm to individuals. Here, we report on Kevlar-fabric-based LIBs that can afford high impact tolerance while offering excellent electrochemical performance comparable to metal-foil-based cells. The integration of Kevlar electrodes, known for their protective nature, with impact-tolerant shear thickening electrolytes (STEs) effectively dissipates the impact energy. It can be ascribed to the shear thickening effect and the induced yarn-to-yarn friction within Kevlar fabrics. This design mirrors the configuration of liquid body armor that consists of shear thickening fluid and Kevlar fabric. This work provides an alternative approach for developing highly impact-tolerant LIBs.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c16109","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Textile-based lithium-ion batteries (LIBs) are in great demand to power wearable electronics. They currently face a key safety challenge, particularly concerning mechanical abuse that could trigger thermal runaway, causing harm to individuals. Here, we report on Kevlar-fabric-based LIBs that can afford high impact tolerance while offering excellent electrochemical performance comparable to metal-foil-based cells. The integration of Kevlar electrodes, known for their protective nature, with impact-tolerant shear thickening electrolytes (STEs) effectively dissipates the impact energy. It can be ascribed to the shear thickening effect and the induced yarn-to-yarn friction within Kevlar fabrics. This design mirrors the configuration of liquid body armor that consists of shear thickening fluid and Kevlar fabric. This work provides an alternative approach for developing highly impact-tolerant LIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Hydrogel-Gated MXene-Graphene Field-Effect Transistor for Selective Detection and Screening of SARS-CoV-2 and E. coli Bacteria Cost-Effective Electrode Fabrication Method Using Hydroxypropyl Methylcellulose Binder for Proton Exchange Membrane Water Electrolysis Impact of Glycosylation of Apolipoprotein D on Its Interaction with Gold Nanoparticles: Insights from Molecular Dynamics Simulations Developing a Novel Agrochemical-Based MOF: A Multifunctional Platform with Herbicidal and Antibacterial Activities Two-Component Hydrogels Built from Chinese Herbal Medicine-Derived Glycyrrhizic Acid and Puerarin: Assembly Mechanism, Self-Healing Properties, and Selective Antibacterial Activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1