Chun-Sheng Jiang, Rouin Farshchi, Timothy Nagle, Dingyuan Lu, Gang Xiong, Lorelle M Mansfield, Matthew O Reese
{"title":"Microelectronic Structure and Doping Nonuniformity of Phosphorus-Doped CdSeTe Solar Cells.","authors":"Chun-Sheng Jiang, Rouin Farshchi, Timothy Nagle, Dingyuan Lu, Gang Xiong, Lorelle M Mansfield, Matthew O Reese","doi":"10.1021/acsami.4c15741","DOIUrl":null,"url":null,"abstract":"<p><p>Optimizing group-V doping and Se alloying are two main focuses for advancing CdTe photovoltaic technology. We report on nanometer-scale characterizations of microelectronic structures of phosphorus (P)-doped CdSeTe devices using a combination of two atomic force microscopy-based techniques, namely, Kelvin probe force microscopy (KPFM) and scanning spreading resistance microscopy (SSRM). KPFM on device cross-section images distribution of the potential drop across the device. SSRM taken on a delaminated front interface and further beveling into absorber bulk reveals local distributions of doping polarity and carrier concentration. The KPFM and SSRM imaging corroborate each other, suggesting that nonuniform doping revealed by SSRM is associated with nonuniform potential features observed by KPFM. These detrimental microelectronic structures were improved by enhancing P-doping. The large nonuniform potential drop and deep overall n-p transition in the device without doping were mitigated to potential fluctuation around the front interface and n-p transition depth of ∼100 nm by low-level P-doping and further mitigated to scarce and slight irregular potential and p-weighed doping at the interface by high-level P-doping. These characterizations imply sophisticated defect chemistry, atomic structure, and associated electronic structure in CdTe with Se alloying and group-V doping together and further point to the direction for improving device efficiency by mitigating and ultimately eliminating the nonuniform doping and irregular potential.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c15741","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optimizing group-V doping and Se alloying are two main focuses for advancing CdTe photovoltaic technology. We report on nanometer-scale characterizations of microelectronic structures of phosphorus (P)-doped CdSeTe devices using a combination of two atomic force microscopy-based techniques, namely, Kelvin probe force microscopy (KPFM) and scanning spreading resistance microscopy (SSRM). KPFM on device cross-section images distribution of the potential drop across the device. SSRM taken on a delaminated front interface and further beveling into absorber bulk reveals local distributions of doping polarity and carrier concentration. The KPFM and SSRM imaging corroborate each other, suggesting that nonuniform doping revealed by SSRM is associated with nonuniform potential features observed by KPFM. These detrimental microelectronic structures were improved by enhancing P-doping. The large nonuniform potential drop and deep overall n-p transition in the device without doping were mitigated to potential fluctuation around the front interface and n-p transition depth of ∼100 nm by low-level P-doping and further mitigated to scarce and slight irregular potential and p-weighed doping at the interface by high-level P-doping. These characterizations imply sophisticated defect chemistry, atomic structure, and associated electronic structure in CdTe with Se alloying and group-V doping together and further point to the direction for improving device efficiency by mitigating and ultimately eliminating the nonuniform doping and irregular potential.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.