Jennifer R DeRosa, Joseph E Subotnik, Zheng Pei, Yihan Shao, Nicholas S Shuman, Shaun G Ard, Albert A Viggiano, D Vale Cofer-Shabica
{"title":"Revisiting the Discrepancy between Experimental and Theoretical Predictions of the Adiabaticity of Ti<sup>+</sup> + CH<sub>3</sub>OH.","authors":"Jennifer R DeRosa, Joseph E Subotnik, Zheng Pei, Yihan Shao, Nicholas S Shuman, Shaun G Ard, Albert A Viggiano, D Vale Cofer-Shabica","doi":"10.1021/acs.jpca.4c06834","DOIUrl":null,"url":null,"abstract":"<p><p>We revisit the naked transition metal cation (Ti<sup>+</sup>) and methanol reaction and go beyond the standard Landau-Zener (LZ) picture when modeling the intersystem crossing (ISC) rate between the lowest doublet and quartet states. We use both (i) unconstrained Born-Oppenheimer molecular dynamics (BOMD) calculations with an approximate two-state method to estimate population transfer between spin diabats and (ii) constrained dynamics to explore energetically accessible portions of the <i>N</i><sub>DOF</sub> - 1 crossing seam, where <i>N</i><sub>DOF</sub> is the total number of internal degrees of freedom. Whereas previous LZ calculations (that necessarily relied on the Condon approximation to be valid) fell short and predicted much slower crossing probabilities than shown in experiment, we show that ISC can occur rapidly because the spin-orbit coupling (SOC) between the doublet and quartet surfaces can vary by 2 orders of magnitude (depending on where in the seam the crossing occurs during dynamics) and the crossing region is revisited multiple times during a dynamics run of a few hundred femtoseconds. We further isolate the two important nuclear coordinates that tune the SOC and modulate the transition, highlighting exactly how and why organometallic ISC can occur rapidly for small systems with floppy internal nuclear vibrational modes.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c06834","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We revisit the naked transition metal cation (Ti+) and methanol reaction and go beyond the standard Landau-Zener (LZ) picture when modeling the intersystem crossing (ISC) rate between the lowest doublet and quartet states. We use both (i) unconstrained Born-Oppenheimer molecular dynamics (BOMD) calculations with an approximate two-state method to estimate population transfer between spin diabats and (ii) constrained dynamics to explore energetically accessible portions of the NDOF - 1 crossing seam, where NDOF is the total number of internal degrees of freedom. Whereas previous LZ calculations (that necessarily relied on the Condon approximation to be valid) fell short and predicted much slower crossing probabilities than shown in experiment, we show that ISC can occur rapidly because the spin-orbit coupling (SOC) between the doublet and quartet surfaces can vary by 2 orders of magnitude (depending on where in the seam the crossing occurs during dynamics) and the crossing region is revisited multiple times during a dynamics run of a few hundred femtoseconds. We further isolate the two important nuclear coordinates that tune the SOC and modulate the transition, highlighting exactly how and why organometallic ISC can occur rapidly for small systems with floppy internal nuclear vibrational modes.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.