Excited-State Rotational Dynamics of Amine-Functionalized Terephthalic Acid Derivatives as Linker Models for Metal-Organic Frameworks.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry A Pub Date : 2025-01-15 DOI:10.1021/acs.jpca.4c03827
George Healing, Maksim Zakharzhevskii, Issatay Nadinov, Luis Gutiérrez-Arzaluz, Shorooq A Alomar, Jorge Gascon, Omar F Mohammed
{"title":"Excited-State Rotational Dynamics of Amine-Functionalized Terephthalic Acid Derivatives as Linker Models for Metal-Organic Frameworks.","authors":"George Healing, Maksim Zakharzhevskii, Issatay Nadinov, Luis Gutiérrez-Arzaluz, Shorooq A Alomar, Jorge Gascon, Omar F Mohammed","doi":"10.1021/acs.jpca.4c03827","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how structural modifications affect the photophysics of organic linkers is crucial for their integration into metal-organic frameworks (MOFs) for light-driven applications. This study explores the impact of varying the amine functional group position on two terephthalic acid derivatives─linker <b>1</b> and linker <b>2</b>─by investigating their photophysics through a combination of steady-state and ultrafast laser spectroscopy and time-dependent density functional theory (TD-DFT) calculations. With tetrahydrofuran as the solvent, time-correlated single-photon counting revealed a 2-fold increase in the S<sub>1</sub> excited-state lifetime of the molecule with the amine group at the meta position compared with that of the molecule with the amine group at the ortho position. This phenomenon can be attributed to restricted intramolecular twisting for the molecule with the amine group in the meta position. In this regime, an interplay of high-energy steric and conjugation barriers was revealed for the molecule with the amine group at the meta position by TD-DFT calculations. Moreover, femtosecond/nanosecond transient absorption spectroscopy revealed a reversible excited-state conformational change for the ortho isomer via intramolecular rotation that occurred within ∼110 ps, unlocking a triplet state manifold. This study underscores the importance of modifying organic emitters, either as free linkers or within MOFs, to increase their performance in sensing and light-emitting applications.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c03827","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how structural modifications affect the photophysics of organic linkers is crucial for their integration into metal-organic frameworks (MOFs) for light-driven applications. This study explores the impact of varying the amine functional group position on two terephthalic acid derivatives─linker 1 and linker 2─by investigating their photophysics through a combination of steady-state and ultrafast laser spectroscopy and time-dependent density functional theory (TD-DFT) calculations. With tetrahydrofuran as the solvent, time-correlated single-photon counting revealed a 2-fold increase in the S1 excited-state lifetime of the molecule with the amine group at the meta position compared with that of the molecule with the amine group at the ortho position. This phenomenon can be attributed to restricted intramolecular twisting for the molecule with the amine group in the meta position. In this regime, an interplay of high-energy steric and conjugation barriers was revealed for the molecule with the amine group at the meta position by TD-DFT calculations. Moreover, femtosecond/nanosecond transient absorption spectroscopy revealed a reversible excited-state conformational change for the ortho isomer via intramolecular rotation that occurred within ∼110 ps, unlocking a triplet state manifold. This study underscores the importance of modifying organic emitters, either as free linkers or within MOFs, to increase their performance in sensing and light-emitting applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
A Graph Neural Network-Based Approach to XANES Data Analysis. Excited-State Rotational Dynamics of Amine-Functionalized Terephthalic Acid Derivatives as Linker Models for Metal-Organic Frameworks. Investigation of the Gas-Phase N2+ + CH3CN Reaction at Low Temperatures. Polarization Upends Convention: Halogen Bonding Propensities of Main Group Halides. Vibronic Coupling and Multiple Electronic States Effect in ABS and ECD Spectra: Three [7]Helicene Derivatives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1