Polarization Upends Convention: Halogen Bonding Propensities of Main Group Halides.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry A Pub Date : 2025-01-15 DOI:10.1021/acs.jpca.4c06456
Noah Robinson, Nam Pham, Kelling J Donald
{"title":"Polarization Upends Convention: Halogen Bonding Propensities of Main Group Halides.","authors":"Noah Robinson, Nam Pham, Kelling J Donald","doi":"10.1021/acs.jpca.4c06456","DOIUrl":null,"url":null,"abstract":"<p><p>The propensities for sigma hole bonding by halogen atoms bonded to central atoms below period 2 in the periodic table remain to be systematically examined. Using iodine as our reference halogen atom, a comprehensive analysis of the tendencies for halogen and other forms of significant sigma hole bonding by simple compounds of main group atoms from H to At is accomplished. An examination of the structure and bonding of complexes formed by those iodine-substituted main group compounds and sigma donating bases (ammonia and trimethylamine) is performed to probe the viability of halogen bonding by heavy main group R<sub><i>n</i></sub>M-I compounds in particular, given the historic focus on period 2. We show that propensities for halogen bonding by F<sub><i>n</i></sub>M-I systems for certain columns of the main group vary anomalously as M gets heavier due to a polarization-induced escalation of the electrostatic potential on I. In certain cases, the positive potential at the sigma hole on I is weaker than that at sigma holes on the central M or geminal R atoms. Previously unexplored cases of strong halogen bonding by the fluoroiodides of heavy group 13 atoms are identified, and prospects for other sigma hole type interactions to polarized (main group) central atoms are elucidated.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c06456","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The propensities for sigma hole bonding by halogen atoms bonded to central atoms below period 2 in the periodic table remain to be systematically examined. Using iodine as our reference halogen atom, a comprehensive analysis of the tendencies for halogen and other forms of significant sigma hole bonding by simple compounds of main group atoms from H to At is accomplished. An examination of the structure and bonding of complexes formed by those iodine-substituted main group compounds and sigma donating bases (ammonia and trimethylamine) is performed to probe the viability of halogen bonding by heavy main group RnM-I compounds in particular, given the historic focus on period 2. We show that propensities for halogen bonding by FnM-I systems for certain columns of the main group vary anomalously as M gets heavier due to a polarization-induced escalation of the electrostatic potential on I. In certain cases, the positive potential at the sigma hole on I is weaker than that at sigma holes on the central M or geminal R atoms. Previously unexplored cases of strong halogen bonding by the fluoroiodides of heavy group 13 atoms are identified, and prospects for other sigma hole type interactions to polarized (main group) central atoms are elucidated.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
A Graph Neural Network-Based Approach to XANES Data Analysis. Excited-State Rotational Dynamics of Amine-Functionalized Terephthalic Acid Derivatives as Linker Models for Metal-Organic Frameworks. Investigation of the Gas-Phase N2+ + CH3CN Reaction at Low Temperatures. Polarization Upends Convention: Halogen Bonding Propensities of Main Group Halides. Vibronic Coupling and Multiple Electronic States Effect in ABS and ECD Spectra: Three [7]Helicene Derivatives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1