Effects of coexisting goethite or lepidocrocite on Fe(II)-induced ferrihydrite transformation pathways and Cd speciation.

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2025-01-04 DOI:10.1016/j.scitotenv.2024.178321
Meiling Yin, Xin Li, Chuling Guo, Qiaohui Zhong, Xiaofei Li, Lijuan Zeng, Yuting Zhou, Chen Yang, Zhi Dang
{"title":"Effects of coexisting goethite or lepidocrocite on Fe(II)-induced ferrihydrite transformation pathways and Cd speciation.","authors":"Meiling Yin, Xin Li, Chuling Guo, Qiaohui Zhong, Xiaofei Li, Lijuan Zeng, Yuting Zhou, Chen Yang, Zhi Dang","doi":"10.1016/j.scitotenv.2024.178321","DOIUrl":null,"url":null,"abstract":"<p><p>The efficacy of ferrihydrite in remediating Cd-contaminated soil is tightly regulated by Fe(II)-induced mineralogical transformations. Despite the common coexistence of iron minerals such as goethite and lepidocrocite, which can act as templates for secondary mineral formation, the impact of these minerals on Fe(II)-induced ferrihydrite transformation and the associated Cd fate have yet to be elucidated. Herein, we investigated the simultaneous evolution of secondary minerals and Cd speciation during Fe(II)-induced ferrihydrite transformation in the presence of goethite versus lepidocrocite. The presence of goethite resulted in a more pronounced ferrihydrite transformation than lepidocrocite because goethite facilitates electron transfer. Coexisting goethite promoted the production of secondary goethite with different morphology by triggering template-directed nucleation and growth of labile Fe(III) derived from ferrihydrite and intermediate lepidocrocite, respectively. However, coexisting lepidocrocite impeded goethite formation from ferrihydrite and acted as the template to facilitate secondary lepidocrocite production. Furthermore, variations in the crystallinity of coexisting lepidocrocite influenced the particle size and crystallinity of the secondary lepidocrocite, reflecting different dominant mechanisms in secondary lepidocrocite formation. Despite partial Cd mobilization into the solution due to Fe(II)-induced ferrihydrite transformation, secondary goethite and lepidocrocite re-sequestered Cd through lattice Fe(III) substitution, indicated by an increased structural Cd proportion, expanded lattice spacing, and reduced hyperfine field intensity. Additionally, secondary goethite was more effective than secondary lepidocrocite in sequestering Cd. Coexisting goethite increased the structural Cd proportion by 3.5-fold compared to coexisting lepidocrocite, demonstrating the superior ability of coexisting goethite in enhancing Cd stability during Fe(II)-induced ferrihydrite transformation in natural soils. These findings highlight the impact of template-driven mineralogical transformation on Cd fate in polluted soils and provide crucial implications for toxic metal remediation using mineral amendments.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"959 ","pages":"178321"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.178321","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The efficacy of ferrihydrite in remediating Cd-contaminated soil is tightly regulated by Fe(II)-induced mineralogical transformations. Despite the common coexistence of iron minerals such as goethite and lepidocrocite, which can act as templates for secondary mineral formation, the impact of these minerals on Fe(II)-induced ferrihydrite transformation and the associated Cd fate have yet to be elucidated. Herein, we investigated the simultaneous evolution of secondary minerals and Cd speciation during Fe(II)-induced ferrihydrite transformation in the presence of goethite versus lepidocrocite. The presence of goethite resulted in a more pronounced ferrihydrite transformation than lepidocrocite because goethite facilitates electron transfer. Coexisting goethite promoted the production of secondary goethite with different morphology by triggering template-directed nucleation and growth of labile Fe(III) derived from ferrihydrite and intermediate lepidocrocite, respectively. However, coexisting lepidocrocite impeded goethite formation from ferrihydrite and acted as the template to facilitate secondary lepidocrocite production. Furthermore, variations in the crystallinity of coexisting lepidocrocite influenced the particle size and crystallinity of the secondary lepidocrocite, reflecting different dominant mechanisms in secondary lepidocrocite formation. Despite partial Cd mobilization into the solution due to Fe(II)-induced ferrihydrite transformation, secondary goethite and lepidocrocite re-sequestered Cd through lattice Fe(III) substitution, indicated by an increased structural Cd proportion, expanded lattice spacing, and reduced hyperfine field intensity. Additionally, secondary goethite was more effective than secondary lepidocrocite in sequestering Cd. Coexisting goethite increased the structural Cd proportion by 3.5-fold compared to coexisting lepidocrocite, demonstrating the superior ability of coexisting goethite in enhancing Cd stability during Fe(II)-induced ferrihydrite transformation in natural soils. These findings highlight the impact of template-driven mineralogical transformation on Cd fate in polluted soils and provide crucial implications for toxic metal remediation using mineral amendments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Assessment of the effect of management activities like a drought salinity barrier and herbicide treatments on the spread of submersed and floating aquatic estuary macrophytes. Effects of coexisting goethite or lepidocrocite on Fe(II)-induced ferrihydrite transformation pathways and Cd speciation. A new form of hazardous microparticulate contamination to the marine environment from ships using heavy fuel oil with exhaust gas scrubbers - Characterization and implications for fate, transport and ecotoxicity. Critical evaluation of extracellular polymeric substances extraction methods: Extraction efficiency, molecular characteristics, and heavy metals binding properties. Effects of wetland disturbance on methane emissions and influential factors: A global meta-analysis of field studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1