{"title":"Usefulness of serial in vivo imaging to directly assess the role of inflammation in thrombus resolution and organization.","authors":"Aditya Adinata, Tetsuya Hara, Arinal Chairul Achyar, Yoko Suzuki, Ken-Ichi Hirata, Hiromasa Otake, Noriaki Emoto","doi":"10.1016/j.bbrc.2025.151293","DOIUrl":null,"url":null,"abstract":"<p><p>Deep vein thrombosis (DVT) remains a significant health problem. Although animal models have provided significant insights into the DVT pathophysiology, time-course assessment in a same animal is technically limited. Recently, we reported a novel murine saphenous DVT model for in vivo visualization of spatiotemporal dynamics of inflammatory cells. This study further shed a light on the resolution and organization process of DVT using serial in vivo imaging technique. Similar with ferric chloride-induced thrombus model, our saphenous DVT model allowed serial in vivo imaging with fluorescence microscopy. However, unlike ferric chloride-induced thrombus model, we observed a significant decrease of DVT burden. Red blood cells area gradually decreased followed by fibrin and collagen deposition over time, although ferric chloride model induced platelet-rich arterial thrombus. Histological assessment revealed that neutrophils influx peaked 3 h after DVT induction, followed by macrophages' migration at 120 h' post-induction, indicating similar organization process with traditional stasis-induced DVT model. Ly6G/Ly6C positive cells at 3 h predicted the reduction of DVT burden (r > 0.8; P < 0.01), suggesting that inflammatory response at acute phase plays pivotal role in DVT resolution. MMP-9 expression was observed and colocalized with neutrophils at early timepoints in both traditional stasis-induced DVT model and our femoral imaging models. Taken together, our in vivo imaging model might allow better understanding of the resolution and organization processes in DVT.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"747 ","pages":"151293"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbrc.2025.151293","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Deep vein thrombosis (DVT) remains a significant health problem. Although animal models have provided significant insights into the DVT pathophysiology, time-course assessment in a same animal is technically limited. Recently, we reported a novel murine saphenous DVT model for in vivo visualization of spatiotemporal dynamics of inflammatory cells. This study further shed a light on the resolution and organization process of DVT using serial in vivo imaging technique. Similar with ferric chloride-induced thrombus model, our saphenous DVT model allowed serial in vivo imaging with fluorescence microscopy. However, unlike ferric chloride-induced thrombus model, we observed a significant decrease of DVT burden. Red blood cells area gradually decreased followed by fibrin and collagen deposition over time, although ferric chloride model induced platelet-rich arterial thrombus. Histological assessment revealed that neutrophils influx peaked 3 h after DVT induction, followed by macrophages' migration at 120 h' post-induction, indicating similar organization process with traditional stasis-induced DVT model. Ly6G/Ly6C positive cells at 3 h predicted the reduction of DVT burden (r > 0.8; P < 0.01), suggesting that inflammatory response at acute phase plays pivotal role in DVT resolution. MMP-9 expression was observed and colocalized with neutrophils at early timepoints in both traditional stasis-induced DVT model and our femoral imaging models. Taken together, our in vivo imaging model might allow better understanding of the resolution and organization processes in DVT.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics