Usefulness of serial in vivo imaging to directly assess the role of inflammation in thrombus resolution and organization.

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical and biophysical research communications Pub Date : 2025-01-06 DOI:10.1016/j.bbrc.2025.151293
Aditya Adinata, Tetsuya Hara, Arinal Chairul Achyar, Yoko Suzuki, Ken-Ichi Hirata, Hiromasa Otake, Noriaki Emoto
{"title":"Usefulness of serial in vivo imaging to directly assess the role of inflammation in thrombus resolution and organization.","authors":"Aditya Adinata, Tetsuya Hara, Arinal Chairul Achyar, Yoko Suzuki, Ken-Ichi Hirata, Hiromasa Otake, Noriaki Emoto","doi":"10.1016/j.bbrc.2025.151293","DOIUrl":null,"url":null,"abstract":"<p><p>Deep vein thrombosis (DVT) remains a significant health problem. Although animal models have provided significant insights into the DVT pathophysiology, time-course assessment in a same animal is technically limited. Recently, we reported a novel murine saphenous DVT model for in vivo visualization of spatiotemporal dynamics of inflammatory cells. This study further shed a light on the resolution and organization process of DVT using serial in vivo imaging technique. Similar with ferric chloride-induced thrombus model, our saphenous DVT model allowed serial in vivo imaging with fluorescence microscopy. However, unlike ferric chloride-induced thrombus model, we observed a significant decrease of DVT burden. Red blood cells area gradually decreased followed by fibrin and collagen deposition over time, although ferric chloride model induced platelet-rich arterial thrombus. Histological assessment revealed that neutrophils influx peaked 3 h after DVT induction, followed by macrophages' migration at 120 h' post-induction, indicating similar organization process with traditional stasis-induced DVT model. Ly6G/Ly6C positive cells at 3 h predicted the reduction of DVT burden (r > 0.8; P < 0.01), suggesting that inflammatory response at acute phase plays pivotal role in DVT resolution. MMP-9 expression was observed and colocalized with neutrophils at early timepoints in both traditional stasis-induced DVT model and our femoral imaging models. Taken together, our in vivo imaging model might allow better understanding of the resolution and organization processes in DVT.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"747 ","pages":"151293"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbrc.2025.151293","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Deep vein thrombosis (DVT) remains a significant health problem. Although animal models have provided significant insights into the DVT pathophysiology, time-course assessment in a same animal is technically limited. Recently, we reported a novel murine saphenous DVT model for in vivo visualization of spatiotemporal dynamics of inflammatory cells. This study further shed a light on the resolution and organization process of DVT using serial in vivo imaging technique. Similar with ferric chloride-induced thrombus model, our saphenous DVT model allowed serial in vivo imaging with fluorescence microscopy. However, unlike ferric chloride-induced thrombus model, we observed a significant decrease of DVT burden. Red blood cells area gradually decreased followed by fibrin and collagen deposition over time, although ferric chloride model induced platelet-rich arterial thrombus. Histological assessment revealed that neutrophils influx peaked 3 h after DVT induction, followed by macrophages' migration at 120 h' post-induction, indicating similar organization process with traditional stasis-induced DVT model. Ly6G/Ly6C positive cells at 3 h predicted the reduction of DVT burden (r > 0.8; P < 0.01), suggesting that inflammatory response at acute phase plays pivotal role in DVT resolution. MMP-9 expression was observed and colocalized with neutrophils at early timepoints in both traditional stasis-induced DVT model and our femoral imaging models. Taken together, our in vivo imaging model might allow better understanding of the resolution and organization processes in DVT.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
期刊最新文献
Methylglyoxal compromises callus mineralization and impairs fracture healing through suppression of osteoblast terminal differentiation. Proline enhances the hepatic induction of lipogenic gene expression in male hepatic fasn reporter mice. Recent advances in the dual effects of activin A on tumors. Research of carrying mechanism between β-lactoglobulin and linoleic acid: Effects on protein structure and oxidative stability of linoleic acid. BPC1 and BPC2 positively regulates the waterlogging stress tolerance in Arabidopsis thaliana.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1