Genotypic difference in response to copper stress in upland cotton as revealed by physiological and molecular expression analyses.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES BMC Plant Biology Pub Date : 2025-01-06 DOI:10.1186/s12870-024-06025-0
Jianfei Wu, Tao Wang, Yin Huang, Shuiping Xiao, Xiaoxia Luo, Yanfeng Deng, Xiu Yang, Qingquan Kong, Feiyu Tang
{"title":"Genotypic difference in response to copper stress in upland cotton as revealed by physiological and molecular expression analyses.","authors":"Jianfei Wu, Tao Wang, Yin Huang, Shuiping Xiao, Xiaoxia Luo, Yanfeng Deng, Xiu Yang, Qingquan Kong, Feiyu Tang","doi":"10.1186/s12870-024-06025-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cotton is a non-edible fiber crop with considerable potential for the remediation of copper-polluted soil. However, the Cu toxicity tolerance mechanism in cotton remains largely obscure. To address the issue, we first identified two cotton lines contrasting in response to Cu toxicity by examining 12 morphological and physiological attributes of 43 origin scattered cotton genotypes under Cu excess. Then both lines were subjected to a comprehensive comparative study, aiming to unravel the cotton Cu tolerance mechanism through integrated morphological, physio-biochemical, Cu uptake and distribution, and related molecular expression analyses.</p><p><strong>Results: </strong>Based on the phenotypic values and corresponding tolerance indexes of 12 parameters, A2304 and A1415 were identified as Cu-tolerant and -sensitive, respectively. Compared to A1415, A2304 exhibited significantly higher antioxidant enzyme activities and non-enzymatic antioxidant levels, producing fewer amounts of reactive oxygen species and a lower level of malonyldialdehyde. On Cu excess, A2304 accumulated lower concentrations of Cu ions in various plant parts and subcellular components, and fewer Cu ions were presented in active chemical forms. However, the total Cu uptake amount per plant did not differ between both lines due to larger plant biomass with A2304. In contrast to A1415, Cu stress activated or increased the expressions of Cu homeostasis regulator (GhSPL7) and genes responsible for Cu delivery (GhCCS, GhCOX17), chelation (GhMT2), and compartmentation into vacuoles (GhHMA5), while inactivating or decreasing the expressions of genes accounting for Cu uptake (GhCOPT1) and Cu exporting from vacuoles (GhCOPT5) in the root cell with A2304. Additionally, A2304 may impede the root cell wall from binding Cu ions by enhancing the pectin methylesterification degree by up-regulating GhPMEI3 and GhPMEI9 encoding pectin methylesterase inhibitor and stabilizing the cell wall organization by down-regulating GhPLY8 and GhPLY20 encoding pectate lyases.</p><p><strong>Conclusions: </strong>To cope with Cu toxicity, the Cu-tolerant genotype activates its antioxidative defense system, immobilizing chemically active Cu ions, and lowering the Cu uptake, bioavailability and immigration within cells by regulating the expressions of genes related to Cu uptake, transport, delivery and cell wall metabolism. This comprehensive comparison study provides insights into breeding Cu-tolerant cotton cultivars that can be utilized for the phytoremediation of Cu-contaminated soils.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"21"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-024-06025-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cotton is a non-edible fiber crop with considerable potential for the remediation of copper-polluted soil. However, the Cu toxicity tolerance mechanism in cotton remains largely obscure. To address the issue, we first identified two cotton lines contrasting in response to Cu toxicity by examining 12 morphological and physiological attributes of 43 origin scattered cotton genotypes under Cu excess. Then both lines were subjected to a comprehensive comparative study, aiming to unravel the cotton Cu tolerance mechanism through integrated morphological, physio-biochemical, Cu uptake and distribution, and related molecular expression analyses.

Results: Based on the phenotypic values and corresponding tolerance indexes of 12 parameters, A2304 and A1415 were identified as Cu-tolerant and -sensitive, respectively. Compared to A1415, A2304 exhibited significantly higher antioxidant enzyme activities and non-enzymatic antioxidant levels, producing fewer amounts of reactive oxygen species and a lower level of malonyldialdehyde. On Cu excess, A2304 accumulated lower concentrations of Cu ions in various plant parts and subcellular components, and fewer Cu ions were presented in active chemical forms. However, the total Cu uptake amount per plant did not differ between both lines due to larger plant biomass with A2304. In contrast to A1415, Cu stress activated or increased the expressions of Cu homeostasis regulator (GhSPL7) and genes responsible for Cu delivery (GhCCS, GhCOX17), chelation (GhMT2), and compartmentation into vacuoles (GhHMA5), while inactivating or decreasing the expressions of genes accounting for Cu uptake (GhCOPT1) and Cu exporting from vacuoles (GhCOPT5) in the root cell with A2304. Additionally, A2304 may impede the root cell wall from binding Cu ions by enhancing the pectin methylesterification degree by up-regulating GhPMEI3 and GhPMEI9 encoding pectin methylesterase inhibitor and stabilizing the cell wall organization by down-regulating GhPLY8 and GhPLY20 encoding pectate lyases.

Conclusions: To cope with Cu toxicity, the Cu-tolerant genotype activates its antioxidative defense system, immobilizing chemically active Cu ions, and lowering the Cu uptake, bioavailability and immigration within cells by regulating the expressions of genes related to Cu uptake, transport, delivery and cell wall metabolism. This comprehensive comparison study provides insights into breeding Cu-tolerant cotton cultivars that can be utilized for the phytoremediation of Cu-contaminated soils.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
期刊最新文献
Agro-morphological characterization and assessment of metabolic profiling and anticancer activities in various tribulus (Tribulus terrestris L.) populations. Assessing the success of breeding maize inbred lines with contrasting diferulate concentrations. Genotypic difference in response to copper stress in upland cotton as revealed by physiological and molecular expression analyses. Smart estimation of protective antioxidant enzymes' activity in savory (Satureja rechingeri L.) under drought stress and soil amendments. Differential biochemical responses of seven Indian wheat genotypes to temperature stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1