Efficient voltammetric platform combining a molecularly imprinted polymer and silver-nanoparticle-decorated black phosphorus nanosheets for selective determination of Gatifloxacin.

IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Food Chemistry: X Pub Date : 2024-12-14 eCollection Date: 2025-01-01 DOI:10.1016/j.fochx.2024.102094
Jingtao Wu, Yonghui Xia, Tianyu Wang, Yafeng Zhang, Guangli Li
{"title":"Efficient voltammetric platform combining a molecularly imprinted polymer and silver-nanoparticle-decorated black phosphorus nanosheets for selective determination of Gatifloxacin.","authors":"Jingtao Wu, Yonghui Xia, Tianyu Wang, Yafeng Zhang, Guangli Li","doi":"10.1016/j.fochx.2024.102094","DOIUrl":null,"url":null,"abstract":"<p><p>An ultrasensitive and selective voltammetric platform combined a molecularly imprinted poly(pyrrole) membrane with Ag-nanoparticle-functionalized black phosphorus nanosheets (MIP/BPNS-AgNPs) was developed for trace GAT detection. The physicochemical properties of the MIP/BPNS-AgNPs were studied by various spectroscopic and electrochemical techniques. BPNS-AgNPs improved the ambient stability and electrochemical activity of the BPNS and possessed a large surface area for accommodating abundant templates to produce specific imprinted sites. The resulting MIP/BPNS-AgNP-modified glassy carbon electrode (GCE) greatly enhanced voltammetric responses for GAT. The MIP/BPNS-AgNP/GCE exhibited admirable GAT determination performance, with two linear responses (0.001-1 and 1-50 μM), high sensitivity (9.965 and 0.5378 μA μM<sup>-1</sup>), and a low detection limit of 0.2 nM. In addition, the MIP electrode could selectively detect GAT in complex matrices and retain roust responses for a month. The applicability of MIP/BPNS-AgNP/GCE toward the detection of GAT in pharmaceutical formulations, milk, and human serum was verified with satisfactory results.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102094"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699385/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fochx.2024.102094","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

An ultrasensitive and selective voltammetric platform combined a molecularly imprinted poly(pyrrole) membrane with Ag-nanoparticle-functionalized black phosphorus nanosheets (MIP/BPNS-AgNPs) was developed for trace GAT detection. The physicochemical properties of the MIP/BPNS-AgNPs were studied by various spectroscopic and electrochemical techniques. BPNS-AgNPs improved the ambient stability and electrochemical activity of the BPNS and possessed a large surface area for accommodating abundant templates to produce specific imprinted sites. The resulting MIP/BPNS-AgNP-modified glassy carbon electrode (GCE) greatly enhanced voltammetric responses for GAT. The MIP/BPNS-AgNP/GCE exhibited admirable GAT determination performance, with two linear responses (0.001-1 and 1-50 μM), high sensitivity (9.965 and 0.5378 μA μM-1), and a low detection limit of 0.2 nM. In addition, the MIP electrode could selectively detect GAT in complex matrices and retain roust responses for a month. The applicability of MIP/BPNS-AgNP/GCE toward the detection of GAT in pharmaceutical formulations, milk, and human serum was verified with satisfactory results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称产品信息其他信息采购帮参考价格
阿拉丁 Pyrrole (Py)
阿拉丁 Levofloxacin (LEV)
阿拉丁 N-methylpyrrolidone (NMP)
阿拉丁 Lysine (LYS)
阿拉丁 Enrofloxacin (ENR)
阿拉丁 Uric acid (UA)
来源期刊
Food Chemistry: X
Food Chemistry: X CHEMISTRY, APPLIED-
CiteScore
4.90
自引率
6.60%
发文量
315
审稿时长
55 days
期刊介绍: Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.
期刊最新文献
Efficient voltammetric platform combining a molecularly imprinted polymer and silver-nanoparticle-decorated black phosphorus nanosheets for selective determination of Gatifloxacin. Miniaturized thermal purge-and-trap device combined with self-calibration colorimetric/SERS dual-model optical sensors for highly rapid and selective detection of sulfur dioxide in wine. Mechanistic studies on the effect of endogenous proteins on the starch retrogradation characteristics of corn before and after postharvest ripening. Antimicrobial activity of chitosan /corn starch film incorporated with starch nanocrystals /nettle essential oil nanoemulsion for Eleutheronema tetradactylum fillet preservation. Storage stability study of metronidazole and hydroxymetronidazole in chicken eggs by liquid chromatography tandem mass spectrometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1