Elizabeth Carrazana, Leonardo Montalbán-Gutiérrez, Pedro Chana-Cuevas, Natalia Salvadores
{"title":"Advancing Parkinson's diagnosis: seed amplification assay for α-synuclein detection in minimally invasive samples.","authors":"Elizabeth Carrazana, Leonardo Montalbán-Gutiérrez, Pedro Chana-Cuevas, Natalia Salvadores","doi":"10.1007/s11010-024-05190-y","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by tremor, rigidity, and bradykinesia, beginning with early loss of dopaminergic neurons in the ventrolateral substantia nigra and advancing to broader neurodegeneration in the midbrain. The clinical heterogeneity of PD and the lack of specific diagnostic tests present significant challenges, highlighting the need for reliable biomarkers for early diagnosis. Alpha-synuclein (α-Syn), a protein aggregating into Lewy bodies and neurites in PD patients, has emerged as a key biomarker due to its central role in PD pathophysiology and potential to reflect pathological processes. Additionally, α-Syn allows earlier differentiation between PD and other neurodegenerative disorders with similar symptoms. Currently, detection of α-Syn pathology in post-mortem brain tissue remains the primary means of achieving a conclusive diagnosis, often revealing significant misdiagnoses. Seed amplification assay (SAA), initially developed for prion diseases, has been adapted to detect α-Syn aggregates in cerebrospinal fluid, showing promise for early diagnosis. Recent studies have demonstrated that SAA can also detect α-Syn aggregates in peripheral samples collected via minimally invasive procedures, such as skin, olfactory mucosa, saliva, and blood. However, the lack of standardized protocols limits clinical application. Standardizing protocols is essential to improve assay reliability and enable accurate patient identification for emerging therapies. This review examines studies on SAA for detecting α-Syn aggregates in minimally invasive samples, focusing on sample collection, processing, and reaction conditions.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-05190-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by tremor, rigidity, and bradykinesia, beginning with early loss of dopaminergic neurons in the ventrolateral substantia nigra and advancing to broader neurodegeneration in the midbrain. The clinical heterogeneity of PD and the lack of specific diagnostic tests present significant challenges, highlighting the need for reliable biomarkers for early diagnosis. Alpha-synuclein (α-Syn), a protein aggregating into Lewy bodies and neurites in PD patients, has emerged as a key biomarker due to its central role in PD pathophysiology and potential to reflect pathological processes. Additionally, α-Syn allows earlier differentiation between PD and other neurodegenerative disorders with similar symptoms. Currently, detection of α-Syn pathology in post-mortem brain tissue remains the primary means of achieving a conclusive diagnosis, often revealing significant misdiagnoses. Seed amplification assay (SAA), initially developed for prion diseases, has been adapted to detect α-Syn aggregates in cerebrospinal fluid, showing promise for early diagnosis. Recent studies have demonstrated that SAA can also detect α-Syn aggregates in peripheral samples collected via minimally invasive procedures, such as skin, olfactory mucosa, saliva, and blood. However, the lack of standardized protocols limits clinical application. Standardizing protocols is essential to improve assay reliability and enable accurate patient identification for emerging therapies. This review examines studies on SAA for detecting α-Syn aggregates in minimally invasive samples, focusing on sample collection, processing, and reaction conditions.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.