Triboelectricity-enhanced photovoltaic effect in hybrid tandem solar cell under rainy condition

IF 17.1 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2025-01-06 DOI:10.1016/j.nanoen.2025.110647
Yuting Xie , Jingqiao Zheng , Jiangtao Guo , Huiyuan Huang , Weize Lin , Jiawei Liao , Qiyao Guo , Jialong Duan , Qunwei Tang , Xiya Yang
{"title":"Triboelectricity-enhanced photovoltaic effect in hybrid tandem solar cell under rainy condition","authors":"Yuting Xie ,&nbsp;Jingqiao Zheng ,&nbsp;Jiangtao Guo ,&nbsp;Huiyuan Huang ,&nbsp;Weize Lin ,&nbsp;Jiawei Liao ,&nbsp;Qiyao Guo ,&nbsp;Jialong Duan ,&nbsp;Qunwei Tang ,&nbsp;Xiya Yang","doi":"10.1016/j.nanoen.2025.110647","DOIUrl":null,"url":null,"abstract":"<div><div>The intermittency and power attenuation under low-light and rainy condition of solar cells highlight the necessity for hybrid energy harvesting to prolong its power generation and multi-environment applications. Herein, we develop a dual-mode triboelectric nanogenerator-silicon tandem solar cell (DTENG-Si TSC) featuring the combination of surface-single electrode and contact-separation mode TENGs which endows the maximum energy conversion of droplet kinetic energy. This design yields an open-circuit voltage of 107.8 V and power density of 1.72 W/m<sup>2</sup> stimulated by one single droplet. Subsequently, the impacts of low-light intensity (250 – 5500 Lux) on the photovoltaic performances of the DTENG-Si TSC with and w/o droplets impingement are systematically investigated, demonstrating the TSC could break through the bottleneck of the limited power conversion efficiency (PCE) of individual Si SC under low-light condition. A PCE of 21.71 % can be achieved by the DTENG-Si TSC, providing a relative enhancement of 10.65 % over the bare Si SC under standard AM 1.5 G solar irradiation at 100 mW cm<sup>−2</sup>. In addition, the power density has a remarkable enhancement over 10 % at the light intensity ranging from 500 to 1500 Lux, indicating this structure configuration can effectively extend the power generation and improve the power conversion efficiency of solar cells under low-light rainy condition.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"135 ","pages":"Article 110647"},"PeriodicalIF":17.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285525000060","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The intermittency and power attenuation under low-light and rainy condition of solar cells highlight the necessity for hybrid energy harvesting to prolong its power generation and multi-environment applications. Herein, we develop a dual-mode triboelectric nanogenerator-silicon tandem solar cell (DTENG-Si TSC) featuring the combination of surface-single electrode and contact-separation mode TENGs which endows the maximum energy conversion of droplet kinetic energy. This design yields an open-circuit voltage of 107.8 V and power density of 1.72 W/m2 stimulated by one single droplet. Subsequently, the impacts of low-light intensity (250 – 5500 Lux) on the photovoltaic performances of the DTENG-Si TSC with and w/o droplets impingement are systematically investigated, demonstrating the TSC could break through the bottleneck of the limited power conversion efficiency (PCE) of individual Si SC under low-light condition. A PCE of 21.71 % can be achieved by the DTENG-Si TSC, providing a relative enhancement of 10.65 % over the bare Si SC under standard AM 1.5 G solar irradiation at 100 mW cm−2. In addition, the power density has a remarkable enhancement over 10 % at the light intensity ranging from 500 to 1500 Lux, indicating this structure configuration can effectively extend the power generation and improve the power conversion efficiency of solar cells under low-light rainy condition.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雨天条件下摩擦电增强混合串联太阳能电池的光伏效应
太阳能电池在弱光和阴雨条件下的间歇性和功率衰减突出了混合能量收集以延长其发电和多环境应用的必要性。在此,我们开发了一种双模摩擦电纳米发电机-硅串联太阳能电池(DTENG-Si TSC),该电池具有表面单电极和接触分离模式TENGs的结合,使液滴动能的能量转换最大化。该设计可产生107.8 V的开路电压和1.72 W/m2的功率密度。随后,系统研究了低光强(250 ~ 5500 Lux)对具有和无液滴撞击的DTENG-Si TSC光伏性能的影响,证明了TSC可以突破单晶Si SC在低光条件下功率转换效率有限的瓶颈。在标准AM 1.5 G、100 mW cm-2的太阳辐照下,DTENG-Si TSC的PCE可达21.71%,比裸Si TSC的相对增强10.65%。此外,在500 ~ 1500 Lux的光强范围内,功率密度有10%以上的显著提高,表明这种结构配置可以有效地延长太阳能电池在弱光阴雨条件下的发电量,提高太阳能电池的功率转换效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Lithium transport from operando microscopy: Kinetic trapping in lithium manganese oxide Corrigendum to “Modulating lattice entropy of rutile Ru0.28Ir0.16Cr0.28Mn0.28O2 nanostructures expedites pH-universal oxygen evolution kinetics” [Nano Energy 144 (2025) 111345] Anodic Interfacial Challenges and Engineering Strategies in Solid-State Lithium Batteries with Composite Polymer Solid Electrolytes Cubic Carbon Cage Confinement of Bimetallic Fluoride: Dual Remedies for Cathode Expansion and Anode Dendrites in Lithium Metal Batteries Plasma-driven interfacial engineering for superconformal deposition on 3D hosts toward ultra-stable dendrite-free sodium anodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1