Riemannian Optimization for Active Mapping With Robot Teams

IF 10.5 1区 计算机科学 Q1 ROBOTICS IEEE Transactions on Robotics Pub Date : 2025-01-06 DOI:10.1109/TRO.2025.3526295
Arash Asgharivaskasi;Fritz Girke;Nikolay Atanasov
{"title":"Riemannian Optimization for Active Mapping With Robot Teams","authors":"Arash Asgharivaskasi;Fritz Girke;Nikolay Atanasov","doi":"10.1109/TRO.2025.3526295","DOIUrl":null,"url":null,"abstract":"Autonomous exploration of unknown environments using a team of mobile robots demands distributed perception and planning strategies to enable efficient and scalable performance. Ideally, each robot should update its map and plan its motion not only relying on its own observations, but also considering the observations of its peers. Centralized solutions to multirobot coordination are susceptible to central node failure and require a sophisticated communication infrastructure for reliable operation. Current decentralized active mapping methods consider simplistic robot models with linear-Gaussian observations and Euclidean robot states. In this work, we present a distributed multirobot mapping and planning method, called Riemannian optimization for active mapping (ROAM). We formulate an optimization problem over a graph with node variables belonging to a Riemannian manifold and a consensus constraint requiring feasible solutions to agree on the node variables. We develop a distributed Riemannian optimization algorithm that relies only on one-hop communication to solve the problem with consensus and optimality guarantees. We show that multirobot active mapping can be achieved via two applications of our distributed Riemannian optimization over different manifolds: distributed estimation of a 3-D semantic map and distributed planning of <inline-formula><tex-math>$\\text{SE}(3)$</tex-math></inline-formula> trajectories that minimize map uncertainty. We demonstrate the performance of ROAM in simulation and real-world experiments using a team of robots with RGB-D cameras.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"1077-1097"},"PeriodicalIF":10.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10829726/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous exploration of unknown environments using a team of mobile robots demands distributed perception and planning strategies to enable efficient and scalable performance. Ideally, each robot should update its map and plan its motion not only relying on its own observations, but also considering the observations of its peers. Centralized solutions to multirobot coordination are susceptible to central node failure and require a sophisticated communication infrastructure for reliable operation. Current decentralized active mapping methods consider simplistic robot models with linear-Gaussian observations and Euclidean robot states. In this work, we present a distributed multirobot mapping and planning method, called Riemannian optimization for active mapping (ROAM). We formulate an optimization problem over a graph with node variables belonging to a Riemannian manifold and a consensus constraint requiring feasible solutions to agree on the node variables. We develop a distributed Riemannian optimization algorithm that relies only on one-hop communication to solve the problem with consensus and optimality guarantees. We show that multirobot active mapping can be achieved via two applications of our distributed Riemannian optimization over different manifolds: distributed estimation of a 3-D semantic map and distributed planning of $\text{SE}(3)$ trajectories that minimize map uncertainty. We demonstrate the performance of ROAM in simulation and real-world experiments using a team of robots with RGB-D cameras.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器人团队主动映射的黎曼优化
使用移动机器人团队自主探索未知环境需要分布式感知和规划策略,以实现高效和可扩展的性能。理想情况下,每个机器人都应该更新自己的地图,规划自己的运动,不仅依靠自己的观察,还考虑到同伴的观察。多机器人协调的集中式解决方案容易受到中心节点故障的影响,并且需要复杂的通信基础设施才能可靠运行。目前的分散主动映射方法考虑了具有线性高斯观测和欧几里得机器人状态的简化机器人模型。在这项工作中,我们提出了一种分布式多机器人映射和规划方法,称为主动映射的黎曼优化(ROAM)。我们构造了一个节点变量属于黎曼流形的图上的优化问题和一个要求节点变量一致的可行解的一致性约束。我们开发了一种仅依赖一跳通信的分布式黎曼优化算法来解决具有一致性和最优性保证的问题。我们表明,多机器人主动映射可以通过我们在不同流形上的分布式黎曼优化的两种应用来实现:3- d语义地图的分布式估计和最小化地图不确定性的$\text{SE}(3)$轨迹的分布式规划。我们使用一组带有RGB-D相机的机器人在模拟和现实世界实验中展示了ROAM的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Robotics
IEEE Transactions on Robotics 工程技术-机器人学
CiteScore
14.90
自引率
5.10%
发文量
259
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles. Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.
期刊最新文献
EROAM: Event-Based Camera Rotational Odometry and Mapping in Real-Time Low-Latency Event-Based Velocimetry for Quadrotor Control in a Narrow Pipe Koopman Operators in Robot Learning Safe and Efficient Quadrupedal Locomotion with A Chambolle-Pock Whole-Body Controller SEVAC: Sample Efficient Variational Actor Critic for Reliable Navigation Learning in Uncertain Topological Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1