Mineral Scale Formation during Crossflow Reverse Osmosis at Constant Flux and Constant Transmembrane Pressure Conditions

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL Industrial & Engineering Chemistry Research Pub Date : 2025-01-07 DOI:10.1021/acs.iecr.4c04059
Mostafa Nassr, Sarah M. Dischinger, Ji Yeon Lee, Kristofer L. Gleason, Sergi Molins, Nicolas Spycher, Pedram Bigdelou, Jacob Johnston, Nathaniel A. Lynd, Nils Tilton, William T. Stringfellow, Benny D. Freeman, Daniel J. Miller
{"title":"Mineral Scale Formation during Crossflow Reverse Osmosis at Constant Flux and Constant Transmembrane Pressure Conditions","authors":"Mostafa Nassr, Sarah M. Dischinger, Ji Yeon Lee, Kristofer L. Gleason, Sergi Molins, Nicolas Spycher, Pedram Bigdelou, Jacob Johnston, Nathaniel A. Lynd, Nils Tilton, William T. Stringfellow, Benny D. Freeman, Daniel J. Miller","doi":"10.1021/acs.iecr.4c04059","DOIUrl":null,"url":null,"abstract":"Mineral scale formation on membrane surfaces is a significant challenge in reverse osmosis water purification. Laboratory fouling experiments are typically run such that the transmembrane pressure (TMP) is fixed, and the permeate flux decreases over time as scales accumulate on the membrane surface. However, this change in flux means that the hydrodynamic conditions at the membrane surface are continuously changing, which could affect crystallization and foulant deposition processes. Operating under constant permeate flux conditions, in contrast, is advantageous because it keeps the hydrodynamic conditions relatively consistent, making it possible to compare how membrane properties (<i>e</i>.<i>g</i>., surface chemistry) affect fouling propensity. Industrial reverse osmosis operations are not run strictly in either constant TMP or constant flux mode; while they may start at a constant TMP, feed pressure may be periodically adjusted to maintain permeate water production within a specified range. The scarcity of constant permeate flux reverse osmosis scaling experiments reported in the literature frustrates efforts to compare membrane fouling processes under constant TMP and constant flux conditions. For the first time, the evolution of the fouling layer resistance was compared as a function of cumulative permeate volume per membrane area during constant TMP and constant flux reverse osmosis filtrations. Scaling experiments were conducted by challenging commercial reverse osmosis membranes with a model feed solution nearly saturated with calcium sulfate dihydrate (gypsum). At low fluxes, the increase in fouling layer resistance was quantitatively similar for the two operational modes. In contrast, at high fluxes, the fouling layer resistance increased more rapidly in constant flux filtration than in constant TMP filtration. The mechanism of scale formation in constant TMP and constant flux operation was self-limiting and self-reinforcing, respectively.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"35 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c04059","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mineral scale formation on membrane surfaces is a significant challenge in reverse osmosis water purification. Laboratory fouling experiments are typically run such that the transmembrane pressure (TMP) is fixed, and the permeate flux decreases over time as scales accumulate on the membrane surface. However, this change in flux means that the hydrodynamic conditions at the membrane surface are continuously changing, which could affect crystallization and foulant deposition processes. Operating under constant permeate flux conditions, in contrast, is advantageous because it keeps the hydrodynamic conditions relatively consistent, making it possible to compare how membrane properties (e.g., surface chemistry) affect fouling propensity. Industrial reverse osmosis operations are not run strictly in either constant TMP or constant flux mode; while they may start at a constant TMP, feed pressure may be periodically adjusted to maintain permeate water production within a specified range. The scarcity of constant permeate flux reverse osmosis scaling experiments reported in the literature frustrates efforts to compare membrane fouling processes under constant TMP and constant flux conditions. For the first time, the evolution of the fouling layer resistance was compared as a function of cumulative permeate volume per membrane area during constant TMP and constant flux reverse osmosis filtrations. Scaling experiments were conducted by challenging commercial reverse osmosis membranes with a model feed solution nearly saturated with calcium sulfate dihydrate (gypsum). At low fluxes, the increase in fouling layer resistance was quantitatively similar for the two operational modes. In contrast, at high fluxes, the fouling layer resistance increased more rapidly in constant flux filtration than in constant TMP filtration. The mechanism of scale formation in constant TMP and constant flux operation was self-limiting and self-reinforcing, respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
期刊最新文献
Solution Thermodynamics of l-Glutamic Acid Polymorphs from Finite-Sized Molecular Dynamics Simulations Adsorptive Separation and Simultaneous Reduction of Highly Toxic Chromium Oxyanions by Agroforestry Biomass-Derived N-Rich Activated Carbon In Situ Synthesis of MIL-160 Tubular Membrane with High Selectivity for Gas Separation Mineral Scale Formation during Crossflow Reverse Osmosis at Constant Flux and Constant Transmembrane Pressure Conditions A New Approach to Lithium Resource Acquisition by Recovering Lithium from Sludge Generated during the Production of Lithium Iron Phosphate Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1