{"title":"Rheology and mechanical properties of limestone calcined clay based engineered cementitious composites with nano CaCO3","authors":"Yuting Wang, Meng Chen, Tong Zhang, Mingzhong Zhang","doi":"10.1016/j.cemconcomp.2025.105923","DOIUrl":null,"url":null,"abstract":"The application of binder consisting of limestone, calcined clay and cement (LC<sup>3</sup>) promotes the development of low-carbon engineering cementitious composites (ECC). In order to improve the comprehensive properties of LC<sup>3</sup>-ECC, this paper investigates the feasibility of using nano CaCO<sub>3</sub> (NC) to replace the limestone powder up to 20% for LC<sup>3</sup>-ECC preparation through rheology and mechanical tests along with the micro-design calculation and microstructure analysis. Results indicate that the yield stress and plastic viscosity of LC<sup>3</sup>-ECC are largely improved with increasing NC replacement rate. Meanwhile, the compressive, flexural and tensile strengths of LC<sup>3</sup>-ECC with NC raise firstly and then decline, while the strengths are maximum at NC replacement rate of 5% but the tensile strain capacity remains at 2.3%. The hydration promotion effect and pore structure refinement effect of NC particles improve the mechanical strength of LC<sup>3</sup>-ECC, but the performance degradation occurs when the replacement rate of the NC exceeds 10%. In micromechanics, the fibre bridging stress of LC<sup>3</sup>-ECC reinforced by NC with replacement rate of 5% decreases by 18.5% compared to that of without NC, but it grows with the increasing NC replacement rate. In combination with fresh, hardened and microstructure behaviour, LC<sup>3</sup>-ECC exhibits the optimum mechanical behaviour with the NC replacement rate of 10%–15%.","PeriodicalId":519419,"journal":{"name":"Cement and Concrete Composites","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cemconcomp.2025.105923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The application of binder consisting of limestone, calcined clay and cement (LC3) promotes the development of low-carbon engineering cementitious composites (ECC). In order to improve the comprehensive properties of LC3-ECC, this paper investigates the feasibility of using nano CaCO3 (NC) to replace the limestone powder up to 20% for LC3-ECC preparation through rheology and mechanical tests along with the micro-design calculation and microstructure analysis. Results indicate that the yield stress and plastic viscosity of LC3-ECC are largely improved with increasing NC replacement rate. Meanwhile, the compressive, flexural and tensile strengths of LC3-ECC with NC raise firstly and then decline, while the strengths are maximum at NC replacement rate of 5% but the tensile strain capacity remains at 2.3%. The hydration promotion effect and pore structure refinement effect of NC particles improve the mechanical strength of LC3-ECC, but the performance degradation occurs when the replacement rate of the NC exceeds 10%. In micromechanics, the fibre bridging stress of LC3-ECC reinforced by NC with replacement rate of 5% decreases by 18.5% compared to that of without NC, but it grows with the increasing NC replacement rate. In combination with fresh, hardened and microstructure behaviour, LC3-ECC exhibits the optimum mechanical behaviour with the NC replacement rate of 10%–15%.