{"title":"Polysulfide Tandem Conversion for Lithium–Sulfur Batteries","authors":"Zhilong Wang, Jianxiong Gao, Shimeng Zhang, Yu Wu, Yanlan Ren, Yongqi Lu, Xinyu Zhao, Bowen Jin, Mingfei Shao","doi":"10.1002/smll.202409867","DOIUrl":null,"url":null,"abstract":"The electrocatalytic conversion of 16-electron multistep polysulfides is crucial for lithium–sulfur batteries, while it is hard to achieve compatibility between intricate sulfur reduction processes and appropriate catalysts. Herein, a tandem conversion strategy is reported to boost multi-step intermediate reactions of polysulfides transformation by designing an electrocatalyst featuring cobalt and zinc sites (Co/Zn), where the Zn serve as sites for the conversion of long-chain lithium polysulfides (LiPSs), promoting the transformation of S<sub>8</sub> to Li<sub>2</sub>S<sub>4</sub>; the Co sites accelerate the kinetics of the subsequent reduction of Li<sub>2</sub>S<sub>4</sub>. This tandem catalysis method not only enhances the conversion of the initial reactants but also provides additional support for the intermediates, thereby facilitating subsequent reactions to maximize capacity. Consequently, the cell utilizing this precise electrocatalyst delivers a high initial discharge-specific capacity of 1347.5 mAh g<sup>−1</sup> at a rate of 0.1 C, demonstrates outstanding rate performance (796.8 mAh g<sup>−1</sup> at 3 C), and excellent cycle stability with a capacity attenuation rate of 0.086% per cycle at 3.0 C. These results offer insights into the coordinated design of electrocatalysts for sulfur cathodes based on precise catalytic sites and complex multi-step conversion reactions.","PeriodicalId":228,"journal":{"name":"Small","volume":"98 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202409867","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The electrocatalytic conversion of 16-electron multistep polysulfides is crucial for lithium–sulfur batteries, while it is hard to achieve compatibility between intricate sulfur reduction processes and appropriate catalysts. Herein, a tandem conversion strategy is reported to boost multi-step intermediate reactions of polysulfides transformation by designing an electrocatalyst featuring cobalt and zinc sites (Co/Zn), where the Zn serve as sites for the conversion of long-chain lithium polysulfides (LiPSs), promoting the transformation of S8 to Li2S4; the Co sites accelerate the kinetics of the subsequent reduction of Li2S4. This tandem catalysis method not only enhances the conversion of the initial reactants but also provides additional support for the intermediates, thereby facilitating subsequent reactions to maximize capacity. Consequently, the cell utilizing this precise electrocatalyst delivers a high initial discharge-specific capacity of 1347.5 mAh g−1 at a rate of 0.1 C, demonstrates outstanding rate performance (796.8 mAh g−1 at 3 C), and excellent cycle stability with a capacity attenuation rate of 0.086% per cycle at 3.0 C. These results offer insights into the coordinated design of electrocatalysts for sulfur cathodes based on precise catalytic sites and complex multi-step conversion reactions.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.