Lixia Yu, Chunjing Hu, Xiang Wu, Xiaobing Lou, Tao Gan, Nian Zhang, Ying Zou, Bingwen Hu, Chao Li
{"title":"Strong Correlation between Ion-Migration Generated Vacancies and Anion Redox Activity in Layered Oxides","authors":"Lixia Yu, Chunjing Hu, Xiang Wu, Xiaobing Lou, Tao Gan, Nian Zhang, Ying Zou, Bingwen Hu, Chao Li","doi":"10.1021/acsenergylett.4c03136","DOIUrl":null,"url":null,"abstract":"The role of dynamically generated vacancies associated with cation migrations in activating or facilitating the anion redox reaction (ARR) in layered oxides is still unknown. By taking P2-type Na<sub>2/3</sub>Zn<sub><i>x</i></sub>Mn<sub>1–<i>x</i></sub>O<sub>2</sub> as a model system, we herein showcase that Zn-migration induced vacancies are responsible for the ARR activity through first-principles calculations. Remarkably, we reveal a quasi-quantitative connection between Zn-migration induced vacancies and ARR activity in a series of Na<sub>2/3</sub>Zn<sub><i>x</i></sub>Mn<sub>1–<i>x</i></sub>O<sub>2</sub> (<i>x</i> = 0.1–0.3) materials by an arsenal of characterizations. The partially reversible Zn migration will divide the ARR beyond the activation cycle into “reversible ion-migration induced” and “irreversible ion-migration induced” types. We further highlight that a stable cyclic performance can be achieved via balancing these two types of ARR and transition-metal (TM) redox, securing both a high reversible capacity and stable discharge voltage. These insights represent a conceptual breakthrough toward the role of dynamically generated vacancies in activating and stabilizing ARR.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"35 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c03136","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The role of dynamically generated vacancies associated with cation migrations in activating or facilitating the anion redox reaction (ARR) in layered oxides is still unknown. By taking P2-type Na2/3ZnxMn1–xO2 as a model system, we herein showcase that Zn-migration induced vacancies are responsible for the ARR activity through first-principles calculations. Remarkably, we reveal a quasi-quantitative connection between Zn-migration induced vacancies and ARR activity in a series of Na2/3ZnxMn1–xO2 (x = 0.1–0.3) materials by an arsenal of characterizations. The partially reversible Zn migration will divide the ARR beyond the activation cycle into “reversible ion-migration induced” and “irreversible ion-migration induced” types. We further highlight that a stable cyclic performance can be achieved via balancing these two types of ARR and transition-metal (TM) redox, securing both a high reversible capacity and stable discharge voltage. These insights represent a conceptual breakthrough toward the role of dynamically generated vacancies in activating and stabilizing ARR.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.