{"title":"Context-Aware Multi-view Stereo Network for Efficient Edge-Preserving Depth Estimation","authors":"Wanjuan Su, Wenbing Tao","doi":"10.1007/s11263-024-02337-8","DOIUrl":null,"url":null,"abstract":"<p>Learning-based multi-view stereo methods have achieved great progress in recent years by employing the coarse-to-fine depth estimation framework. However, existing methods still encounter difficulties in recovering depth in featureless areas, object boundaries, and thin structures which mainly due to the poor distinguishability of matching clues in low-textured regions, the inherently smooth properties of 3D convolution neural networks used for cost volume regularization, and information loss of the coarsest scale features. To address these issues, we propose a Context-Aware multi-view stereo Network (CANet) that leverages contextual cues in images to achieve efficient edge-preserving depth estimation. The structural self-similarity information in the reference view is exploited by the introduced self-similarity attended cost aggregation module to perform long-range dependencies modeling in the cost volume, which can boost the matchability of featureless regions. The context information in the reference view is subsequently utilized to progressively refine multi-scale depth estimation through the proposed hierarchical edge-preserving residual learning module, resulting in delicate depth estimation at edges. To enrich features at the coarsest scale by making it focus more on delicate areas, a focal selection module is presented which can enhance the recovery of initial depth with finer details such as thin structure. By integrating the strategies above into the well-designed lightweight cascade framework, CANet achieves superior performance and efficiency trade-offs. Extensive experiments show that the proposed method achieves state-of-the-art performance with fast inference speed and low memory usage. Notably, CANet ranks first on challenging Tanks and Temples advanced dataset and ETH3D high-res benchmark among all published learning-based methods.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"39 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02337-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Learning-based multi-view stereo methods have achieved great progress in recent years by employing the coarse-to-fine depth estimation framework. However, existing methods still encounter difficulties in recovering depth in featureless areas, object boundaries, and thin structures which mainly due to the poor distinguishability of matching clues in low-textured regions, the inherently smooth properties of 3D convolution neural networks used for cost volume regularization, and information loss of the coarsest scale features. To address these issues, we propose a Context-Aware multi-view stereo Network (CANet) that leverages contextual cues in images to achieve efficient edge-preserving depth estimation. The structural self-similarity information in the reference view is exploited by the introduced self-similarity attended cost aggregation module to perform long-range dependencies modeling in the cost volume, which can boost the matchability of featureless regions. The context information in the reference view is subsequently utilized to progressively refine multi-scale depth estimation through the proposed hierarchical edge-preserving residual learning module, resulting in delicate depth estimation at edges. To enrich features at the coarsest scale by making it focus more on delicate areas, a focal selection module is presented which can enhance the recovery of initial depth with finer details such as thin structure. By integrating the strategies above into the well-designed lightweight cascade framework, CANet achieves superior performance and efficiency trade-offs. Extensive experiments show that the proposed method achieves state-of-the-art performance with fast inference speed and low memory usage. Notably, CANet ranks first on challenging Tanks and Temples advanced dataset and ETH3D high-res benchmark among all published learning-based methods.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.