Inherent asymmetry of Rpd3S coordinates its nucleosome engagement and association with elongating RNA polymerase II

Yixuan Pan, Meiyang Liu, Chun Ruan, Mengyuan Peng, Min Hao, Qi Zhang, Jingdong Xue, Yanling Niu, Ningzhe Li, Haipeng Guan, Pei Wang, Mingqian Hu, Haitao Li, Wenjuan Wang, Juan Song, Yanhua Yao, Yimin Lao, Bing Li
{"title":"Inherent asymmetry of Rpd3S coordinates its nucleosome engagement and association with elongating RNA polymerase II","authors":"Yixuan Pan, Meiyang Liu, Chun Ruan, Mengyuan Peng, Min Hao, Qi Zhang, Jingdong Xue, Yanling Niu, Ningzhe Li, Haipeng Guan, Pei Wang, Mingqian Hu, Haitao Li, Wenjuan Wang, Juan Song, Yanhua Yao, Yimin Lao, Bing Li","doi":"10.1038/s41594-024-01453-w","DOIUrl":null,"url":null,"abstract":"<p>The Rpd3S histone deacetylase complex has a crucial role in genomic integrity by deacetylating transcribed nucleosomes following RNA polymerase (Pol) II passage. Cryo-EM studies highlight the importance of asymmetrical Rco1–Eaf3 dimers in nucleosome binding, yet the interaction dynamics with nucleosomal substrates alongside elongating Pol II are poorly understood. Here we demonstrate the essential function of the Rco1 N-terminal intrinsically disordered region (IDR) in modulating Pol II association, in which K/R mutations within the Rco1 IDR impair interaction of Rpd3S with the C-terminal domain (CTD) of Rpb1, without affecting nucleosome recognition or complex integrity. We also identify the Rco1-PHD1 and Eaf3-CHD domains as crucial for specific binding to Ser5-phosphorylated CTD. The Rco1 IDR alleviates autoinhibition from its C terminus, facilitating PHD1-CHD engagement with phosphorylated CTD. Furthermore, we reveal a conserved mechanism by which asymmetrical Rco1–Eaf3 dimers coordinate nucleosome engagement and Pol II interaction, enhancing understanding of epigenetic complexes associated with transcriptional machinery.</p>","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature structural & molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-024-01453-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Rpd3S histone deacetylase complex has a crucial role in genomic integrity by deacetylating transcribed nucleosomes following RNA polymerase (Pol) II passage. Cryo-EM studies highlight the importance of asymmetrical Rco1–Eaf3 dimers in nucleosome binding, yet the interaction dynamics with nucleosomal substrates alongside elongating Pol II are poorly understood. Here we demonstrate the essential function of the Rco1 N-terminal intrinsically disordered region (IDR) in modulating Pol II association, in which K/R mutations within the Rco1 IDR impair interaction of Rpd3S with the C-terminal domain (CTD) of Rpb1, without affecting nucleosome recognition or complex integrity. We also identify the Rco1-PHD1 and Eaf3-CHD domains as crucial for specific binding to Ser5-phosphorylated CTD. The Rco1 IDR alleviates autoinhibition from its C terminus, facilitating PHD1-CHD engagement with phosphorylated CTD. Furthermore, we reveal a conserved mechanism by which asymmetrical Rco1–Eaf3 dimers coordinate nucleosome engagement and Pol II interaction, enhancing understanding of epigenetic complexes associated with transcriptional machinery.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DARPin-induced reactivation of p53 in HPV-positive cells Capturing eukaryotic ribosome dynamics in situ at high resolution RapA opens the RNA polymerase clamp to disrupt post-termination complexes and prevent cytotoxic R-loop formation Inherent asymmetry of Rpd3S coordinates its nucleosome engagement and association with elongating RNA polymerase II Importance of an N-terminal structural switch in the distinction between small RNA-bound and free ARGONAUTE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1