Efficient bimetallic metal–organic framework derived magnetic Co/N-PC-800 nanoreactor for peroxymonosulfate activation and carbamazepine degradation†

IF 5.8 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Environmental Science: Nano Pub Date : 2025-01-08 DOI:10.1039/D4EN00898G
Qiao-Qiao Huang, Yu-Mei Wang, Xun Fu, Xiao-Li Hu, Jia-Wei Wang and Zhong-Min Su
{"title":"Efficient bimetallic metal–organic framework derived magnetic Co/N-PC-800 nanoreactor for peroxymonosulfate activation and carbamazepine degradation†","authors":"Qiao-Qiao Huang, Yu-Mei Wang, Xun Fu, Xiao-Li Hu, Jia-Wei Wang and Zhong-Min Su","doi":"10.1039/D4EN00898G","DOIUrl":null,"url":null,"abstract":"<p >Co/N-PC-<em>T</em> precursors were obtained in this study using solvent heating and immersion methods. Subsequently, simple pot calcination of Co@Zn-MOF (metal–organic framework) and dicyandiamide green precursors was carried out to prepare N-doped magnetic carbon materials, known as Co/N-PC-<em>T</em>. Co/N-PC-<em>T</em> were employed to activate peroxymonosulfate (PMS) and degrade developing pollutants. The Co/N-PC-800 catalyst exhibited excellent catalytic activity. When Co/N-PC-800 was used for PMS activation, carbamazepine (CBZ) degradation could exceed 98% within 30 min, with a degradation rate of 0.23 min<small><sup>−1</sup></small>, which was 4.77, 5.73, and 1.28 times higher than that of Co/N-PC-600 (0.05 min<small><sup>−1</sup></small>), Co/N-PC-700 (0.04 min<small><sup>−1</sup></small>), and Co/N-PC-900 (0.18 min<small><sup>−1</sup></small>), respectively. The Co/N-PC-800/PMS system contained radical and non-radical pathways, which were further confirmed by electron paramagnetic resonance (EPR) tests, and the corresponding catalytic reaction mechanisms were proposed. The breakdown pathways of CBZ in the Co/N-PC-800/PMS system were described, and the ecotoxicity of CBZ and its degradation by-products was assessed. After five cycles, Co/N-PC-800 was shown to be stable and recyclable. This study proposes a novel synthetic technique for developing MOF-derived environmental functional materials.</p>","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":" 2","pages":" 1609-1625"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/en/d4en00898g","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Co/N-PC-T precursors were obtained in this study using solvent heating and immersion methods. Subsequently, simple pot calcination of Co@Zn-MOF (metal–organic framework) and dicyandiamide green precursors was carried out to prepare N-doped magnetic carbon materials, known as Co/N-PC-T. Co/N-PC-T were employed to activate peroxymonosulfate (PMS) and degrade developing pollutants. The Co/N-PC-800 catalyst exhibited excellent catalytic activity. When Co/N-PC-800 was used for PMS activation, carbamazepine (CBZ) degradation could exceed 98% within 30 min, with a degradation rate of 0.23 min−1, which was 4.77, 5.73, and 1.28 times higher than that of Co/N-PC-600 (0.05 min−1), Co/N-PC-700 (0.04 min−1), and Co/N-PC-900 (0.18 min−1), respectively. The Co/N-PC-800/PMS system contained radical and non-radical pathways, which were further confirmed by electron paramagnetic resonance (EPR) tests, and the corresponding catalytic reaction mechanisms were proposed. The breakdown pathways of CBZ in the Co/N-PC-800/PMS system were described, and the ecotoxicity of CBZ and its degradation by-products was assessed. After five cycles, Co/N-PC-800 was shown to be stable and recyclable. This study proposes a novel synthetic technique for developing MOF-derived environmental functional materials.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效双金属金属有机骨架衍生磁性Co/N-PC-800纳米反应器用于过氧单硫酸盐活化和卡马西平降解
本研究采用溶剂加热和浸泡法制备了Co/N-PC-T前驱体。随后,将Co@Zn-MOF(金属有机骨架)和双氰胺绿前驱体进行简单锅烧,制备了n掺杂磁性碳材料Co/N-PC-T。采用Co/N-PC-T活化过氧单硫酸盐(PMS)并降解显影污染物。Co/N-PC-800催化剂表现出优异的催化活性。当Co/N-PC-800用于PMS活化时,卡马西平(CBZ)的降解率在30 min内可超过98%,降解率为0.23 min−1,分别是Co/N-PC-600 (0.05 min−1)、Co/N-PC-700 (0.04 min−1)和Co/N-PC-900 (0.18 min−1)的4.77、5.73和1.28倍。Co/N-PC-800/PMS体系包含自由基途径和非自由基途径,并通过电子顺磁共振(EPR)测试进一步证实了这两种途径的存在,并提出了相应的催化反应机理。描述了CBZ在Co/N-PC-800/PMS体系中的分解途径,并评价了CBZ及其降解副产物的生态毒性。经过5次循环,Co/N-PC-800表现出稳定性和可回收性。本研究提出了一种开发mof衍生环境功能材料的新合成技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Science: Nano
Environmental Science: Nano CHEMISTRY, MULTIDISCIPLINARY-ENVIRONMENTAL SCIENCES
CiteScore
12.20
自引率
5.50%
发文量
290
审稿时长
2.1 months
期刊介绍: Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas: Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability Nanomaterial interactions with biological systems and nanotoxicology Environmental fate, reactivity, and transformations of nanoscale materials Nanoscale processes in the environment Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis
期刊最新文献
Effects of Ti3C2Tx (MXene) on growth, oxidative stress, and metabolism of Microcystis aeruginosa Cr(III)-incorporated Fe(III) hydroxides for enhanced redox conversion of As(III) and Cr(VI) in acidic solution Correction: Emerging investigator series: quantitative insights into the relationship between the concentrations and SERS intensities of neonicotinoids in water Recovery of Co(II), Ni(II) and Zn(II) using magnetic nanoparticles (MNPs) at circumneutral pH Chemical heterogeneity observed in the development of photo-oxidized PET micro- and nanoparticle weathered controls
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1