{"title":"Site- and enantioselective allylic and propargylic C–H oxidation enabled by copper-based biomimetic catalysis","authors":"Honggang Zhang, Yibo Zhou, Tilong Yang, Jingui Wu, Pinhong Chen, Zhenyang Lin, Guosheng Liu","doi":"10.1038/s41929-024-01276-4","DOIUrl":null,"url":null,"abstract":"<p>Methods for direct enantioselective oxidation of C(<i>sp</i><sup>3</sup>)–H bonds will revolutionize the preparation of chiral alcohols and their derivatives. Enzymatic catalysis, which uses key metal-oxo species to facilitate efficient hydrogen atom abstraction, has evolved as a highly selective approach for C–H oxidation in biological systems. Despite its effectiveness, reproducing this function and achieving high stereoselectivity in biomimetic catalysts has proven to be a daunting task. Here we present a copper-based biomimetic catalytic system that achieves highly efficient asymmetric <i>sp</i><sup>3</sup> C–H oxidation with C–H substrates as the limiting reagent. A Cu(II)-bound <i>tert</i>-butoxy radical is responsible for the site-selective C–H bond cleavage, which resembles the active site of copper-based enzymes for C–H oxidation. The developed method has been successfully accomplished with good functional group compatibility and exceptionally high site- and enantioselectivity, which is applicable for the late-stage oxidation of bioactive compounds.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"20 1","pages":""},"PeriodicalIF":42.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-024-01276-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Methods for direct enantioselective oxidation of C(sp3)–H bonds will revolutionize the preparation of chiral alcohols and their derivatives. Enzymatic catalysis, which uses key metal-oxo species to facilitate efficient hydrogen atom abstraction, has evolved as a highly selective approach for C–H oxidation in biological systems. Despite its effectiveness, reproducing this function and achieving high stereoselectivity in biomimetic catalysts has proven to be a daunting task. Here we present a copper-based biomimetic catalytic system that achieves highly efficient asymmetric sp3 C–H oxidation with C–H substrates as the limiting reagent. A Cu(II)-bound tert-butoxy radical is responsible for the site-selective C–H bond cleavage, which resembles the active site of copper-based enzymes for C–H oxidation. The developed method has been successfully accomplished with good functional group compatibility and exceptionally high site- and enantioselectivity, which is applicable for the late-stage oxidation of bioactive compounds.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.