{"title":"Soil microbes influence the ecology and evolution of plant plasticity","authors":"Lana G. Bolin","doi":"10.1111/nph.20383","DOIUrl":null,"url":null,"abstract":"<p>\n</p><ul>\n<li>Stress often induces plant trait plasticity, and microbial communities also alter plant traits. Therefore, it is unclear how much plasticity results from direct plant responses to stress vs indirect responses due to stress-induced changes in soil microbial communities.</li>\n<li>To test how microbes and microbial community responses to stress affect the ecology and potentially the evolution of plant plasticity, I grew plants in four stress environments (salt, herbicide, herbivory, and no stress) with microbes that had responded to these same environments or with sterile inoculant.</li>\n<li>Plants delayed flowering under stress only when inoculated with live microbial communities, and this plasticity was maladaptive. However, microbial communities responded to stress in ways that accelerated flowering across all environments. Microbes also affected the expression of genetic variation for plant flowering time and specific leaf area, as well as genetic variation for plasticity of both traits, and disrupted a positive genetic correlation for plasticity in response to herbicide and herbivory stress, suggesting that microbes may affect the pace of plant evolution.</li>\n<li>Together, these results highlight an important role for soil microbes in plant plastic responses to stress and suggest that microbes may alter the evolution of plant plasticity.</li>\n</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"67 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20383","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Stress often induces plant trait plasticity, and microbial communities also alter plant traits. Therefore, it is unclear how much plasticity results from direct plant responses to stress vs indirect responses due to stress-induced changes in soil microbial communities.
To test how microbes and microbial community responses to stress affect the ecology and potentially the evolution of plant plasticity, I grew plants in four stress environments (salt, herbicide, herbivory, and no stress) with microbes that had responded to these same environments or with sterile inoculant.
Plants delayed flowering under stress only when inoculated with live microbial communities, and this plasticity was maladaptive. However, microbial communities responded to stress in ways that accelerated flowering across all environments. Microbes also affected the expression of genetic variation for plant flowering time and specific leaf area, as well as genetic variation for plasticity of both traits, and disrupted a positive genetic correlation for plasticity in response to herbicide and herbivory stress, suggesting that microbes may affect the pace of plant evolution.
Together, these results highlight an important role for soil microbes in plant plastic responses to stress and suggest that microbes may alter the evolution of plant plasticity.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.