Insertion of the β-ketoacyl-CoA synthase MdKCS2 promoter segment causes wax biosynthesis difference in apple peel

IF 8.3 1区 生物学 Q1 PLANT SCIENCES New Phytologist Pub Date : 2025-01-08 DOI:10.1111/nph.20378
Lizhi Zhang, Shaobo Yin, Mingqian Wang, Zhi Liu, Tianxing Lv, Yanan Wang, Aide Wang, Dongmei Tan, Yinglin Ji
{"title":"Insertion of the β-ketoacyl-CoA synthase MdKCS2 promoter segment causes wax biosynthesis difference in apple peel","authors":"Lizhi Zhang, Shaobo Yin, Mingqian Wang, Zhi Liu, Tianxing Lv, Yanan Wang, Aide Wang, Dongmei Tan, Yinglin Ji","doi":"10.1111/nph.20378","DOIUrl":null,"url":null,"abstract":"<p>\n</p><ul>\n<li>Cuticular wax is essential for fruit to maintain moisture. Although the wax content of peel surface in apple (<i>Malus</i> spp.) varies, the detailed molecular mechanism remains unclear.</li>\n<li>Here, we identified the <i>β-ketoacyl-CoA synthase 2</i> (<i>MdKCS2</i>) differentially expressed between apple peel with low and high wax content by integrating bulked segregant analysis-sequencing and RNA-seq. We found that a 63-bp insertion in the <i>MdKCS2</i> promoter was the primary reason for apple peel with low wax content. The 63-bp insertion reduced <i>MdKCS2</i> promoter activity and enhanced the DNA binding with the suppressor MdDOF4.6, decreasing wax biosynthesis by reducing C24 very-long-chain fatty acid (VLCFA).</li>\n<li><i>ECERIFERUM 2</i> (<i>MdCER2</i>) was co-expressed with <i>MdKCS2</i> and suppressed by MdMYB56, MdbHLH137 and MdDOF4.6, further decreasing C29 alkane content in apple peel with low C24 VLCFA content.</li>\n<li>Overall, MdKCS2 and MdCER2 are coordinately involved in the wax production of apple peel surface.</li>\n</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"15 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20378","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

  • Cuticular wax is essential for fruit to maintain moisture. Although the wax content of peel surface in apple (Malus spp.) varies, the detailed molecular mechanism remains unclear.
  • Here, we identified the β-ketoacyl-CoA synthase 2 (MdKCS2) differentially expressed between apple peel with low and high wax content by integrating bulked segregant analysis-sequencing and RNA-seq. We found that a 63-bp insertion in the MdKCS2 promoter was the primary reason for apple peel with low wax content. The 63-bp insertion reduced MdKCS2 promoter activity and enhanced the DNA binding with the suppressor MdDOF4.6, decreasing wax biosynthesis by reducing C24 very-long-chain fatty acid (VLCFA).
  • ECERIFERUM 2 (MdCER2) was co-expressed with MdKCS2 and suppressed by MdMYB56, MdbHLH137 and MdDOF4.6, further decreasing C29 alkane content in apple peel with low C24 VLCFA content.
  • Overall, MdKCS2 and MdCER2 are coordinately involved in the wax production of apple peel surface.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
期刊最新文献
Insights into the subdaily variations in methane, nitrous oxide and carbon dioxide fluxes from upland tropical tree stems Two reductases complete steroidal glycoalkaloids biosynthesis in potato Aging-dependent temporal regulation of MIR156 epigenetic silencing by CiLDL1 and CiNF-YB8 in chrysanthemum At least two functions for BdMUTE during the development of stomatal complexes in Brachypodium distachyon MEDIATOR15 destabilizes DELLA protein to promote gibberellin‐mediated plant development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1