{"title":"Unlocking Sulfide Solid-State Battery Longevity by the Paradigm of Dual-Functional Plastic Crystal","authors":"Haoyang Yuan, Wenjun Lin, Shaojie Chen, Changhao Tian, Tao Huang, Aishui Yu","doi":"10.1021/acsnano.4c14288","DOIUrl":null,"url":null,"abstract":"The utilization of sulfide-based solid electrolytes represents an attractive avenue for high safety and energy density all-solid-state batteries. However, the potential has been impeded by electrochemical and mechanical stability at the interface of oxide cathodes. Plastic crystals, a class of organic materials exhibiting remarkable elasticity, chemical stability, and ionic conductivity, have previously been underutilized due to their susceptibility to dissolution in liquid electrolytes. Nevertheless, their application in all-solid-state batteries presents a paradigm that could potentially overcome longstanding interface-related obstacles. This study presents a facile approach to enhancing the performance of sulfide-based solid-state batteries by utilizing nickel-rich oxide cathodes coated with ionically conductive plastic crystals. For employing plastically deformed succinonitrile as a metal ion ligand, it simultaneously supports mechanical stability and interfacial conduction, while LiDFOB establishes moderate ionic conductivity and a stable cathode electrolyte interphase (CEI). The synergistic effects of these mechanisms culminate in remarkable long-term performance metrics, with the capacity retaining 80% after 1529 cycles. Furthermore, this stability is maintained even when the areal capacity density is increased to a substantial 3.53 mA h cm<sup>–2</sup>. By combining electrochemical stability with mechanical plasticity, this approach opens possibilities for the development of long-lasting solid-state batteries suitable for practical applications.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"10 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c14288","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of sulfide-based solid electrolytes represents an attractive avenue for high safety and energy density all-solid-state batteries. However, the potential has been impeded by electrochemical and mechanical stability at the interface of oxide cathodes. Plastic crystals, a class of organic materials exhibiting remarkable elasticity, chemical stability, and ionic conductivity, have previously been underutilized due to their susceptibility to dissolution in liquid electrolytes. Nevertheless, their application in all-solid-state batteries presents a paradigm that could potentially overcome longstanding interface-related obstacles. This study presents a facile approach to enhancing the performance of sulfide-based solid-state batteries by utilizing nickel-rich oxide cathodes coated with ionically conductive plastic crystals. For employing plastically deformed succinonitrile as a metal ion ligand, it simultaneously supports mechanical stability and interfacial conduction, while LiDFOB establishes moderate ionic conductivity and a stable cathode electrolyte interphase (CEI). The synergistic effects of these mechanisms culminate in remarkable long-term performance metrics, with the capacity retaining 80% after 1529 cycles. Furthermore, this stability is maintained even when the areal capacity density is increased to a substantial 3.53 mA h cm–2. By combining electrochemical stability with mechanical plasticity, this approach opens possibilities for the development of long-lasting solid-state batteries suitable for practical applications.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.