RL4CEP: reinforcement learning for updating CEP rules

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2025-01-09 DOI:10.1007/s40747-024-01742-3
Afef Mdhaffar, Ghassen Baklouti, Yassine Rebai, Mohamed Jmaiel, Bernd Freisleben
{"title":"RL4CEP: reinforcement learning for updating CEP rules","authors":"Afef Mdhaffar, Ghassen Baklouti, Yassine Rebai, Mohamed Jmaiel, Bernd Freisleben","doi":"10.1007/s40747-024-01742-3","DOIUrl":null,"url":null,"abstract":"<p>This paper presents RL4CEP, a reinforcement learning (RL) approach to dynamically update complex event processing (CEP) rules. RL4CEP uses Double Deep Q-Networks to update the threshold values used by CEP rules. It is implemented using Apache Flink as a CEP engine and Apache Kafka for message distribution. RL4CEP is a generic approach for scenarios in which CEP rules need to be updated dynamically. In this paper, we use RL4CEP in a financial trading use case. Our experimental results based on three financial trading rules and eight financial datasets demonstrate the merits of RL4CEP in improving the overall profit, when compared to baseline and state-of-the-art approaches, with a reasonable consumption of resources, i.e., RAM and CPU. Finally, our experiments indicate that RL4CEP is executed quite fast compared to traditional CEP engines processing static rules.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"204 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01742-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents RL4CEP, a reinforcement learning (RL) approach to dynamically update complex event processing (CEP) rules. RL4CEP uses Double Deep Q-Networks to update the threshold values used by CEP rules. It is implemented using Apache Flink as a CEP engine and Apache Kafka for message distribution. RL4CEP is a generic approach for scenarios in which CEP rules need to be updated dynamically. In this paper, we use RL4CEP in a financial trading use case. Our experimental results based on three financial trading rules and eight financial datasets demonstrate the merits of RL4CEP in improving the overall profit, when compared to baseline and state-of-the-art approaches, with a reasonable consumption of resources, i.e., RAM and CPU. Finally, our experiments indicate that RL4CEP is executed quite fast compared to traditional CEP engines processing static rules.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RL4CEP:用于更新CEP规则的强化学习
本文提出了一种动态更新复杂事件处理(CEP)规则的强化学习方法RL4CEP。RL4CEP使用Double Deep Q-Networks来更新CEP规则使用的阈值。它是使用Apache Flink作为CEP引擎和Apache Kafka作为消息分发来实现的。RL4CEP是一种通用方法,适用于需要动态更新CEP规则的场景。在本文中,我们在一个金融交易用例中使用RL4CEP。我们基于三个金融交易规则和八个金融数据集的实验结果表明,与基线和最先进的方法相比,RL4CEP在提高整体利润方面具有优势,并且合理消耗资源,即RAM和CPU。最后,我们的实验表明,与处理静态规则的传统CEP引擎相比,RL4CEP执行速度相当快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
Tailored meta-learning for dual trajectory transformer: advancing generalized trajectory prediction Control strategy of robotic manipulator based on multi-task reinforcement learning Explainable and secure framework for autism prediction using multimodal eye tracking and kinematic data A novel three-way distance-based fuzzy large margin distribution machine for imbalance classification Chaos-enhanced metaheuristics: classification, comparison, and convergence analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1